[1]马洪文,王立权,赵朋,等.串联弹性驱动器力驱动力学模型和稳定性分析[J].哈尔滨工程大学学报,2012,(11):1410-1416.[doi:10.3969/j.issn.1006-7043.201109012]
 MA Hongwen,WANG Liquan,ZHAO Peng,et al.Research of dynamic dodel and stability of a series elastic actuator[J].hebgcdxxb,2012,(11):1410-1416.[doi:10.3969/j.issn.1006-7043.201109012]
点击复制

串联弹性驱动器力驱动力学模型和稳定性分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2012年11期
页码:
1410-1416
栏目:
出版日期:
2012-11-25

文章信息/Info

Title:
Research of dynamic dodel and stability of a series elastic actuator
文章编号:
1006-7043(2012)11-1410-07
作者:
马洪文王立权赵朋俞林
哈尔滨工程大学 机电工程学院,黑龙江 哈尔滨 150001
Author(s):
MA Hongwen WANG Liquan ZHAO Peng YU Lin
College of Mechanical and Electrical, Harbin Engineering University, Harbin 150001, China
关键词:
机器人串联弹性驱动器(SEA)Laplace变换稳定性
分类号:
TP242
DOI:
10.3969/j.issn.1006-7043.201109012
文献标志码:
A
摘要:
为了建立基于力源驱动的串联弹性驱动器(series elastic actuator,SEA)动力学模型,在模型中将弹性元件简化为刚度-阻尼并联环节,通过Laplace变换并得到了力源驱动的开环和闭环系统传递函数,进而通过Nyquist稳定判据对其稳定性进行分析,通过Bode图得到其力输出带宽.通过控制与动力学仿真软件对该模型进行机电一体化系统联合仿真得到系统阶跃与正弦跟踪响应,最终利用DSpace与已完成的SEA样机进行实物控制试验,理论仿真和试验结果基本一致,SEA样机力输出稳定,证明所建立模型合理.

参考文献/References:

[1]PRATT G A, WILLIAMSON M M. Series elastic actuators[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. Pittsburgh, USA, 1995.
[2]ROBINSON D W, PRATT J E, PALUSKA D J, et al. Series elastic actuator development for a biomimetic walking robot[C]//IEEE/ASME International Conference on Advanced Intelligent Mechatronics. [s.l.], 1999.
[3]ROBINSON D W, PRATT G A. Force controllable hydro-elastic actuator[C]// IEEE International Conference on Robotics and Automation.San Francisco, USA, 2000.
[4]PRATT J E, KRUPP B T. Series elastic actuators for legged robots[C]// Unmanned Ground Vehicle Technology VI. Orlando, USA, 2004.
[5]PRATT J E, KRUPP B T, Morse C J, et al. The RoboKnee: an exoskeleton for enhancing strength and endurance during walking[C]//IEEE International Conference on Robotics and Automation.New Orleans, USA, 2004.
[6]PRATT J E, KRUPP B, RAGUSILA V, et al. The yobotics-IHMC lower body humanoid robot[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems,(IROS 2009). St. Louis, USA, 2009.
[7]PALUSKA D, HERR H. Series elasticity and actuator power output[C]// IEEE International Conference on Robotics and Automation. Orlando, USA, 2006.
[8]PRATT J, PRATT G. Intuitive control of a planar bipedal walking robot[C]// IEEE International Conference on Robotics and Automation. Leuven, Belgium, 1998.
[9]MA Hongwen, QING Zhizhong, WANG Liquan. Motion space analysis of a new hybrid elastic walking leg[C]// Proceedings of 2010 the 3rd International Conference on Computational Intelligence and Industrial Application. Wuhan, China, 2010.
[10]SUGAR T G, KUMAR V. Design and control of a compliant parallel manipulator[J]. Journal of Mechanical Design, 2002, 124(4): 676-683.
[11]LAURIA M, LEGAULT M, LAVOIE M, et al. High performance differential elastic actuator for robotic interaction tasks[C]// AAAI Symposium. Stanford, USA, 2007.
[12]SENSINGER J W, WEIR R F. Design and analysis of a non-backdrivable series elastic actuator[C]// IEEE 9th International Conference on Rehabilitation Robotics. [s.l.], 2005.
[13]VENEMAN J F, EKKELENKAMP R, KRUIDHOF R, et al. A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots[J]. International Journal of Robotics Research, 2006, 25(3): 261-281.
[14]BLAYA J A, HERR H. Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2004, 12(1): 24-31.
[15]AU S K, DILWORTH P, HERR H. An ankle-foot emulation system for the study of human walking biomechanics[C]// IEEE International Conference on Robotics and Automation. Orlando, USA, 2006.
[16]VALLERY H, VENEMAN J, Van ASSELDONK E, et al. Compliant actuation of rehabilitation robots[J]. IEEE Robotics and Automation Magazine, 2008, 15(3): 60-69.
[17]KENEMAN K, BAE J, TOMIZUKA M. Control of rotary series elastic actuator for ideal force-mode actuation in human-robot interaction applications[J].IEEE/ASME Transactions on Mechatronics, 2009, 14(1): 105-118.
[18]LAGODA C, SCHOUTEN A C, STIENEN A H A, et al. Design of an electric series elastic actuated joint for robotic gait rehabilitation training[C]// IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics. Tokyo, Japan, 2010.
[19]SENSINGER J W, WEIR R F F. User-modulated impedance control of a prosthetic elbow in unconstrained, perturbed motion[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(3): 1043-1055.
[20]VENEMAN J F, EKKELENKAMP R, KRUIDHOF R, et al. Design of a series elastic- and bowdencable-based actuation system for use as torque-actuator in exoskeleton-type training[C]// IEEE 9th International Conference on Rehabilitation Robotics. Chicago, USA, 2005.
[21]WALSH C J, PALUSKA D, PASCH K, et al. Development of a lightweight, underactuated exoskeleton for load-carrying augmentation[C]// IEEE International Conference on Robotics and Automation. Orlando, USA, 2006.
[22]JARDIM B. Development of series elastic actuators for impedance control of an active ankle foot orthosis[C]// 20th International Congress of Mechanical Engineering.Gramado, Brazil, 2009.
[23]KWA H K, NOORDEN J H, MISSEL M, et al. Development of the IHMC mobility assist exoskeleton[C]// IEEE International Conference on Robotics and Automation.Kobe, Japan, 2009.
[24]CHEW C, HONG G, ZHOU W. Series damper actuator: a novel force/torque control actuator[C]// IEEE-RAS International Conference on Humanoid Robots.Santa Monica, USA, 2004.
[25]PRATT G A, WILLISSON P, BOLTON C, et al. Late motor processing in low-impedance robots: impedance control of series-elastic actuators[C]// Proceedings of the 2004 American Control Conference. Boston, USA, 2004.
[26]SENSINGER J W, WEIR R F. Unconstrained impedance control using a compact series elastic actuator[C]// IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications. Beijing, China, 2007.
[27]SENSINGER J W, WEIR R F. Improvements to series elastic actuators[C]// 2nd IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications. Beijing, China, 2007.
[28]WYETH G. Demonstrating the safety and performance of a velocity sourced series elastic actuator[C]// IEEE International Conference on Robotics and Automation. Pasadena, USA, 2008.
[29]WYETH G. Control issues for velocity sourced series elastic actuators[C]// Australasian Conference on Robotics and Automation 2006. Auckland, New Zealand, 2006.
[30]VALLERY H, Ekkelenkamp R, Van Der KOOIJ H, et al. Passive and accurate torque control of series elastic actuators[C]// IEEE/RSJ International Conference on Intelligent Robots and Systems.San Diego, USA, 2007.
[31]MA Hongwen, ZHang Jie, WANG Liquan. Bandwidth analysis of a damped elastic actuator[C]// The 3rd International Conference on Computational Intelligence and Industrial Application. Wuhan, China, 2010.

相似文献/References:

[1]吴健荣,王立权,王才东,等.一种机器人精度设计的新方法研究[J].哈尔滨工程大学学报,2010,(10):0.
 WU Jian-rong,WANG Li-quan,WANG Cai-dong,et al.A novel method for robotic precision design[J].hebgcdxxb,2010,(11):0.
[2]霍光磊,赵立军,李瑞峰,等.基于假设检验的室内环境多特征检测方法[J].哈尔滨工程大学学报,2015,(03):348.[doi:10.3969/j.issn.1006-7043.201310040]
 HUO Guanglei,ZHAO Lijun,LI Ruifeng,et al.An indoor environmental multi-feature identification method based on the hypothesis testing[J].hebgcdxxb,2015,(11):348.[doi:10.3969/j.issn.1006-7043.201310040]

备注/Memo

备注/Memo:
国家自然科学基金资助项目(7150080050);黑龙江省自然科学基金资助项目(F200602,ZD200911);哈尔滨市创新科技人才资助项目(2010RFQXG010);自由探索计划基金资助项目(HEUCF110709)
更新日期/Last Update: 2012-12-13