[1]程广利,张明敏.不确定水声场随机多项式系数解法[J].哈尔滨工程大学学报,2013,(01):21-25.[doi:10.3969/j.issn.1006-7043. 201203010]
 CHENG Guangli,ZHANG Mingmin.On the polynomial chaos coefficients for uncertain underwater acoustic field[J].hebgcdxxb,2013,(01):21-25.[doi:10.3969/j.issn.1006-7043. 201203010]
点击复制

不确定水声场随机多项式系数解法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
21-25
栏目:
出版日期:
2013-01-25

文章信息/Info

Title:
On the polynomial chaos coefficients for uncertain underwater acoustic field
文章编号:
1006-7043(2013)01-0021-05
作者:
程广利 张明敏
海军工程大学水声工程系,湖北武汉430033
Author(s):
CHENG Guangli ZHANG Mingmin
Department of Underwater Acoustic Engineering, Naval University of Engineering, Wuhan 430033, China
关键词:
不确定水声场非嵌入式随机多项式展开法随机多项式系数数值积分法分段概率配点法
分类号:
TP391
DOI:
10.3969/j.issn.1006-7043. 201203010
文献标志码:
A
摘要:
基于非嵌入式随机多项式展开法求解了含不确定海洋环境参数的波动方程,推导了数值积分法求解多项式系数的过程.针对常规概率配点法不能准确计算随不确定输入量剧烈变化的传播损失,提出了分段概率配点法,将输入变量区间进行合理分段,基于非嵌入式随机多项式展开法获得每段的随机多项式,继而得到整个输入变量区间对应的传播损失表达式.结果表明,数值积分法仅适合于计算随单个不确定海洋环境参数不剧烈变化的传播损失,分段概率配点法可高精度计算随不确定输入量剧烈变化的传播损失.

参考文献/References:

[1]ACHARJEE S, ZABARAS N. A non-intrusive stochastic Galerkin approach for modeling uncertainty propagation in deformation processes[J]. Computers and Structures, 2007,85(5):244-254.
[2]XIU D, KARNIADAKIS G. The Wiener-Askey polynomial chaos for stochastic differential equations[J]. Journal on Scientific Computing, 2002(24):619-644.
[3]XIU D, KARNIADAKIS G. A new stochastic approach to transient heat conduction modeling with uncertainty[J]. International Journal of Heat and Mass Transfer, 2003,46: 4681-4693.
[4]张宏涛,赵宇飞,李晨峰. 基于多项式混沌展开的边坡稳定可靠性分析[J].岩土工程学报,2010,32(8):1253-1259. ZHANG Hongtao, ZHAO Yufei, LI Chenfeng. Realiability analysis of slope stability based on polynomial chaos expansion[J]. Chinese Journal of Geotechnical Engineering,2010,32(8):1253-1259.
[5]王晓东,康顺. 多项式混沌法求解随机Burgers方程[J].工程热物理学报,2010,31(3):393-398. WANG Xiaodong, KANG Shun. Solving stochastic Burgers equation using polynomial chaos decomposition[J]. Journal of Engineering Thermophysics,2010,31(3):393-398.
[6]FINETTE S. Propagation of uncertainty for acoustic fields using polynomial chaos expansions[J]. J Acoust Soc Am,2003,114(4):2461.
[7]FINETTE S. Embedding uncertainty into ocean acoustic propagation models[J]. J Acoust Soc Am, 2005,117(3):997-1000.
[8]CREAMER D B. On using polynomial chaos for modeling uncertainty in acoustic propagation[J]. J Acoust Soc Am, 2006,119(4):1979-1994.
[9]LEPAGE K D. Estimation of acoustic propagation uncertainty through polynomial chaos expansions[C]//9th International Conference on Information Fusion. Florence, Italy,2006:1-5.
[10]FINETTE S. A stochastic representation of environmental uncertainty and its coupling to acoustic wave propagation in ocean waveguides[J]. J Acoust Soc Am, 2006,120(5): 2567-2579.
[11]KHINE Y Y, FINETTE S, CREAMER D B. Acoustic propagation in an uncertain waveguide environment using stochastic basis expansions[J]. J Comp Acoust, 2010,18(4):397-441.
[12]XIONG Fenfen, CHEN Wei, XIONG Ying, et al. Weighted stochastic response surface method considering sample weights[J]. Struct Multidisc Optim, 2011,43:837-849.
[13]史良胜,蔡树英,杨金忠. 三维地下水流随机分析的配点法[J]. 水利学报,2010,41(1): 47-54. SHI Liangsheng, CAI Shuying, YANG Jinzhong. The collocation method for stochastic analysis of three-dimensional groundwater flow[J]. Journal of Hydraulic Engineering, 2010,41(1): 47-54.
[14]LEE S H, CHEN Wei. A comparative study of uncertainty propagation methods for black-box type functions [C]// Proceedings of 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Las Vegas, USA, 2007:1102-1109.
[15]罗家洪. 矩阵分析引论[M]. 广州:华南理工大学出版社, 2002:35-39.
[16]THORP W H. Description of the low frequency attenuation coefficient[J]. J Acoust Soc Am, 1967 ,42(1):270.

备注/Memo

备注/Memo:
国家自然科学基金资助项目(51009146)
更新日期/Last Update: 2013-03-19