[1]黄硕,段文洋,游亚戈,等.液舱晃荡与船体非线性时域耦合运动计算[J].哈尔滨工程大学学报,2014,(09):1045-1052.[doi:10.3969/j.issn.1006-7043.201307076]
 HUANG Shuo,DUAN Wenyang,YOU Yage,et al.Nonlinear time domain simulation of sloshing and coupled ship motion[J].hebgcdxxb,2014,(09):1045-1052.[doi:10.3969/j.issn.1006-7043.201307076]
点击复制

液舱晃荡与船体非线性时域耦合运动计算
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年09期
页码:
1045-1052
栏目:
出版日期:
2014-11-25

文章信息/Info

Title:
Nonlinear time domain simulation of sloshing and coupled ship motion
作者:
黄硕123 段文洋3 游亚戈12 姜金辉4 王文胜12
1. 中国科学院 可再生能源重点实验室, 广东 广州 510000;
2. 中国科学院 广州能源研究所, 广东 广州 510000;
3. 哈尔滨工程大学 船舶工程学院, 黑龙江 哈尔滨 150001;
4. 上海船舶运输科学研究所, 上海 200135
Author(s):
HUANG Shuo123 DUAN Wenyang3 YOU Yage12 JIANG Jinhui4 WANG Wensheng12
1. Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou 510000, China;
2. Guangzhou institute of energy conversion, Chinese Academy of Sciences, Guangzhou 510000, China;
3. College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China;
4. Shanghai Shipping Scientific Research Institute, Shanghai 200135, China
关键词:
液舱晃荡能量耗散全非线性模型时域耦合运动LNG船B样条迭代半隐式时域步进法
分类号:
O352;U661.1
DOI:
10.3969/j.issn.1006-7043.201307076
文献标志码:
A
摘要:
LNG船等液货船的研制和应用中,为了研究非线性水动力对液舱晃荡及船体运动的影响,改进了规则波及不规则波中液舱晃荡与船体非线性耦合运动的时域预报技术。通过改变液舱物面边界条件模拟能量耗散,对液舱内部流动采用全非线性模型,船体外流场采用非线性瞬时物面条件的时域格林函数边界元模型,并应用基于组合B样条的高阶面元法求解边值问题和迭代半隐式时域步进法对内外流场和船体运动同时求解。通过对比,验证了这种考虑能量耗散的方法的有效性,研究了非线性水动力中各种因素的影响,得出能量耗散系数μ的选取规律。

参考文献/References:

[1] FALTINSEN O M, TIMOKHA A N. Adaptive multimodal approach to nonlinear sloshing in a rectangular tank[J].Journal of Fluid Mechanics, 2001,432:167-200.
[2] 余建星,唐建飞,刘源,等.浮式液化天然气生产储卸装置重气泄漏扩散模拟分析[J]. 天津大学学报,2013,46(5):381-386.YU Jianxing,TANG Jianfei,LIU Yuan, et al. Simulation and analysis of dispersion of heavy gas leakage from FLNG installation[J]. Journal of Tianjin University, 2013, 46(5):381-386.
[3] 洪亮, 朱仁传, 缪国平,等.波浪中船体与液舱晃荡耦合运动的时域数值计算[J]. 哈尔滨工程大学学报,2012,33(5):635-641.HONG Liang,ZHU Renzhuan,MIAO Guoping, et al. Numerical calculation of ship motions coupled with tank sloshing in time domain based on potential flow theory[J].Journal of Harbin Engineering University,2012, 33(5):635-641.
[4] 李裕龙,朱仁传,缪国平,等.基于OpenFOAM的船舶与液舱流体晃荡在波浪中时域耦合运动的数值模拟[J].船舶力学,2012,16(7):750-758.LI Yulong, ZHU Renchuan, MIAO Guoping, et al. Simulation of ship motions coupled with tank sloshing in time domain based on Open FOAM[J]. Journal of Ship Mechanics, 2012,16(7):750-758.
[5] FALTINSEN O M, TIMOKHA A N. A multimodal method for liquid sloshing in a two-dimensional circular tank [J]. Journal of Fluid Mechanics,2010, 665: 457-479.
[6] BOOKI K, YUNG S. Coupled seakeeping with liquid sloshing in ship tanks[C]//Proceedings of the ASME 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal, 2008:15-20.
[7] MALENICA ?, ZALAR M, CHEN X B. Dynamic coupling of seakeeping and sloshing[C]//Proceedings of the 13th International Offshore and Polar Engineering Conferece. Honolulu, Hawaii, USA, 2003:486-492.
[8] HUANG S, DUAN W Y, MA Q W. An approximation to energy dissipation in time domain simulation of sloshing waves based on linear potential theory[J]. China Ocean Engineering, 2011, 25(2):189-200.
[9] DATTA R, SEN D. The simulation of ship motions using a b-spline-based panel method in time domain [J]. Journal of Ship Research, 2007, 51(3):267-284.
[10] YAN S, MA Q W. Numerical simulation of fully nonlinear interaction between steep waves and 2D floating bodies using the QALE-FEM method [J]. Journal of Computational Physics, 2007, 221:666-692.
[11] MOLIN B, REMY F, LEDOUX A, et al. Effect of roof impacts on coupling between wave response and sloshing in tanks of LNG-carriers [C]//Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal, 2008:15-24.
[12] MOLIN B, REMY F, RIGAUD S, et al. Ch. LNG-FPSO’s: frequency domain coupled analysis of support and liquid cargo motions[C]//Proceedings of INAM Conference. Rethymnon, Greece,2002.
[13] WU G X, MA Q W, EATOCK T R. Numerical simulation of sloshing waves in a 3D tank based on a finite element method[J]. Applied Ocean Research,1998, 20:337-355.
[14] CHEN X B. Hydrodynamics in offshore and naval applications part 1[C]//Proceedings of the 6th International Conference on Hydrodynamics,University of Western Australia. Perth, Australia,2004.
[15] MA Q W. Numerical simulation of nonlinear interaction between structures and steep waves[D]. London: City University, 1998.
[16] 段文洋. 浮体大幅运动非线性水动力研究[D].哈尔滨:哈尔滨工程大学, 1995:67-68.DUAN Wenyang. Nonlinear hydrodynamic forces acting on a ship undergoing large amplitude motions[D]. Harbin: Harbin Engineering University,1995:67-68.
[17] RANADEV D, DEBABRATA S. A B-spline based method for radiation and diffraction problem[J]. Ocean engineering, 2006, 33:2240-2259.
[18] MA Q W, YAN S. QALE-FEM for numerical modelling of non-linear interaction between 3D moored floating bodies and steep waves [J]. International Journal for Numerical Methods in Engineering, 2009, 78:713-756.
[19] GEAR W. Numerical initial value problems in ordinary differential equations[M]. Englewood Cliffs: Prentice-Hall, NJ, 1971.
[20] MARIN. Seakeeping tests for the JIP SALT LNG carrier[R].Report No. 18127-1 & 3-SMB, Jan. 1st, 2003.

相似文献/References:

[1]洪亮,朱仁传,缪国平,等.波浪中船体与液舱晃荡耦合运动的时域数值计算[J].哈尔滨工程大学学报,2012,(05):635.[doi:10.3969/j.issn.1006-7043. 201109044]
 HONG Liang,ZHU Renchuan,MIAO Guoping,et al.Numerical calculation of ship motions coupled with tank sloshing in time domain based on potential flow theory[J].hebgcdxxb,2012,(09):635.[doi:10.3969/j.issn.1006-7043. 201109044]

备注/Memo

备注/Memo:
收稿日期:2013-7-31;改回日期:。
基金项目:国家自然科学基金资助项目(70271029,41106031);国家973计划基金资助项目(2012CB723804).
作者简介:黄硕(1984-),女,助理研究员,博士;段文洋(1967-),男,长江学者,教授,博士生导师.
通讯作者:黄硕,E-mail:huangshuo@ms.giec.ac.cn.
更新日期/Last Update: 2015-06-19