[1]陈建平,唐文勇,徐曼平.船舶结构B样条小波无网格分析技术[J].哈尔滨工程大学学报,2016,37(01):13-18.[doi:10.11990/jheu.201409018]
 CHEN Jianping,TANG Wenyong,XU Manping.Meshless analysis method of ship structures based on a B-spline wavelet[J].hebgcdxxb,2016,37(01):13-18.[doi:10.11990/jheu.201409018]
点击复制

船舶结构B样条小波无网格分析技术(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
37
期数:
2016年01期
页码:
13-18
栏目:
出版日期:
2016-01-25

文章信息/Info

Title:
Meshless analysis method of ship structures based on a B-spline wavelet
作者:
陈建平12 唐文勇1 徐曼平2
1. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240;
2. 广州航海学院 船舶工程学院, 广东 广州 510725
Author(s):
CHEN Jianping12 TANG Wenyong1 XU Manping2
1. School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2. School of Ship Engineering, Guangzhou Maritime Institute, Guangzhou 510725, China
关键词:
船舶结构分析逼近函数移动最小二乘法B样条小波尺度函数无网格MLPG法
分类号:
U661.42
DOI:
10.11990/jheu.201409018
文献标志码:
A
摘要:
为了解决船舶平直结构场量高梯度自适应分析问题,提出了基于B样条小波的无网格局部Petrov-Galerkin法。首先运用最小二乘法和加权余量法来求解结构位移场量的逼近函数,并给出了问题的控制方程和刚度方程。然后在局部无网格Petrov-Galerkin法的基础上,利用m阶B样条函数作为小波基函数来构造船舶结构位移场的逼近函数,并采用两尺度分解技术来分解应力场的高梯度成分和低尺度成分,应用高尺度成分来表示应力高梯度成分。最后选取了两种典型船舶结构进行变形和应力分析,并通过与有限元法的计算结果进行比较,验证了本文提出方法的有效性。

参考文献/References:

[1] 孙丽萍, 李力波. 船舶结构有限元分析[M]. 哈尔滨:哈尔滨工程大学出版社, 2013:1-12. SUN Liping, LI Libo. Finite element analysis of ship structures[M]. Harbin:Harbin Engineering University Press, 2013:1-12.
[2] BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al. Meshless methods:An overview and recent developments[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1-4):3-47.
[3] LIU W K, HAO S, BELYTSCHKO T, et al. Multiple scale meshless methods for damage fracture and localization[J]. Computational Materials Science, 1999, 16(1/2/3/4):197-205.
[4] ATLURI S N, SHEN Shengping. The basis of meshless domain discretization:the meshless local Petrov-Galerkin (MLPG) method[J]. Advances in Computational Mathematics, 2005, 23(1/2):73-93.
[5] ODEN J T, DUARTE C A M, ZIENKIEWICZ O C. A new cloud-based hp finite element method[J]. Computer Methods in Applied Mechanics and Engineering, 1998, 153(1/2):117-126.
[6] LIU G R, GU Y T. Meshless local Petrov-Galerkin (MLPG) method in combination with finite element and boundary element approaches[J]. Computational Mechanics, 2000, 26(6):536-546.
[7] 何沛祥, 李子然, 吴长春. 无网格与有限元的耦合在动态断裂研究中的应用[J]. 应用力学学报, 2006, 23(2):195-198. HE Peixiang, LI Ziran, WU Changchun. Coupled finite element-element-free Galerkin method for dynamic fracture[J]. Chinese Journal of Applied Mechanics, 2006, 23(2):195-198.
[8] 段念, 王文珊, 于怡青, 等. 基于FEM与SPH耦合算法的单颗磨粒切削玻璃的动态过程仿真[J]. 中国机械工程, 2013, 24(20):2716-2721. DUAN Nian, WANG Wenshan, YU Yiqing, et al. Dynamic simulation of single grain cutting of glass by coupling FEM and SPH[J]. China Mechanical Engineering, 2013, 24(20):2716-2721.
[9] JOHNSON G R, STRYK R A, BEISSEL S R, et al. An algorithm to automatically convert distorted finite elements into meshless particles during dynamic deformation[J]. International Journal of Impact Engineering, 2002, 27(10):997-1013.
[10] 胡德安, 韩旭, 肖毅华, 等. 光滑粒子法及其与有限元耦合算法的研究进展[J]. 力学学报, 2013, 45(5):639-652. HU Dean, HAN Xu, XIAO Yihua, et al. Research developments of smoothed particle hydrodynamics method and its coupling with finite element method[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(5):639-652.
[11] LIU G R. Meshfree methods:moving beyond the finite element method[M]. Boca Raton:CRC Press, 2002:56-85.
[12] ATLURI S N, ZHU T. A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics[J]. Computational Mechanics, 1998, 22(2):117-127.
[13] ZIENKIEWICZ O C, TAYLOR R L. The finite element method[M]. 4th ed. London:McGraw-Hill, 1989:97-101.
[14] 杨玉英, 李晶. 无网格Galerkin方法中权函数的研究[J]. 塑性工程学报, 2005, 12(4):5-9. YANG Yuying, LI Jing. A study of weight function in element-free Galerkin method[J]. Journal of Plasticity Engineering, 2005, 12(4):5-9.
[15] LONG Shuyao, HU Dean. A study on the weight function of the moving least square approximation in the local boundary integral equation method[J]. Acta Mechanica Solida Sinica, 2003, 16(3):276-282.
[16] MALLAT S G. Multiresolution approximations and wavelet orthonormal bases of L2(R)[J]. Transactions of the American Mathematical Society, 1989, 315(1):69-87.
[17] 秦荣. 样条无网格法[M]. 北京:科学出版社, 2012:25-46.QIN Rong. Spline meshless method[M]. Beijing:Science Press, 2012:25-46.
[18] CHUI C K, QUAK E. Wavelets on a bounded interval[M]//BRAESS D, SCHUMAKER L L. eds. Numerical Methods of Approximation Theory. Basel:Birkhäuser Basel, 1993, 9:53-57.
[19] CHEN J S, PAN Chunhui, WU Chengtang, et al. Reproducing kernel particle methods for large deformation analysis of non-linear structures[J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139(1/2/3/4):195-227.

备注/Memo

备注/Memo:
收稿日期:2014-09-05;改回日期:。
基金项目:国家自然科学基金重点资助项目(51239007);中国博士后基金资助项目(2015M581622);广东省自然科学基金资助项目(2014A030313792).
作者简介:陈建平(1973-), 男, 副教授, 博士.
通讯作者:陈建平, E-mail: wchchenjp@sina.com.
更新日期/Last Update: 2016-02-04