[1]杨德森,李中政,方尔正.三列不同相位原波形成的参量阵声场研究[J].哈尔滨工程大学学报,2016,37(01):7-12,109.[doi:10.11990/jheu.201410082]
 YANG Desen,LI Zhongzheng,FANG Erzheng.Study of the parametric array acoustic field yielded by three collimated primary waves with different phases[J].hebgcdxxb,2016,37(01):7-12,109.[doi:10.11990/jheu.201410082]
点击复制

三列不同相位原波形成的参量阵声场研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
37
期数:
2016年01期
页码:
7-12,109
栏目:
出版日期:
2016-01-25

文章信息/Info

Title:
Study of the parametric array acoustic field yielded by three collimated primary waves with different phases
作者:
杨德森1 李中政12 方尔正1
1. 哈尔滨工程大学 水声工程学院, 黑龙江 哈尔滨 150001;
2. 海军92198部队, 辽宁 兴城 125109
Author(s):
YANG Desen1 LI Zhongzheng12 FANG Erzheng1
1. College of Underwater Acoustics Engineering, Harbin Engineering University, Harbin 150001, China;
2. Unit 92198 of Naval, Xingcheng 125109, China
关键词:
参量阵三波作用原波相位算子分离法时频域相结合
分类号:
O427.9
DOI:
10.11990/jheu.201410082
文献标志码:
A
摘要:
参量阵能生成低频、高指向性声束,在海底地层剖面测量、掩埋目标探测与识别、水下通信等水声工程领域有着广泛的应用。理论研究表明,当三列原波相互作用时,能形成具有两个差频分量的参量阵辐射系统,但尚未有文献对受原波相位影响的多频参量阵声场进行系统分析。基于此,本文综合计算精度和效率的需求,借鉴算子分离思想,利用时频域相结合的方法求解KZK方程,实现对三列不同相位原波相互作用形成的参量阵声场的描述。计算结果表明:参量阵差频信号的声压幅值随着原波相位的改变而改变,并且原波相位均为零时,两个差频分量的声压幅值最大。最后进行了试验研究,实验结果与仿真结果吻合较好。

参考文献/References:

[1] WESTERVELT P J. Parametric acoustic array[J]. The Journal of the Acoustical Society of America, 1963, 35(4):535-537.
[2] BERKTAY H O. Possible exploitation of non-linear acoustics in underwater transmitting applications[J]. Journal of Sound and Vibration, 1965, 2(4):435-461.
[3] DI MARCOBERARDINO L, MARCHAL J, CERVENKA P. Nonlinear multi-frequency transmitter for sea-floor characterization[C]//Proceedings of the Acoustics Conference. Nantes, France, 2012:2800-2805.
[4] BIRKEN J A. Empirical results from frequency-scanning nonlinear sonar in deep water[J]. The Journal of the Acoustical Society of America, 1974, 56(S1):S41.
[5] 王润田. 海底声学探测与底质识别技术的新进展[J]. 声学技术, 2002, 21(1/2):96-98. WANG Runtian. Progress in detecting the geological formations and sediment properties by sound[J]. Technical Acoustics, 2002, 21(1/2):96-98.
[6] KAMAKURA T, HAMADA N, AOKI K, et al. Nonlinearly generated spectral components in the near-field of a directive sound source[J]. The Journal of the Acoustical Society of America, 1989, 85(6):2331-2337.
[7] NAZE TJ?TTA J, TJ?TTA S, VEFRING E H. Propagation and interaction of two collinear finite amplitude sound beams[J]. The Journal of the Acoustical Society of America, 1990, 88(6):2859-2870.
[8] LEE Y S, HAMILTON M F. Time-domain modeling of pulsed finite-amplitude sound beams[J]. The Journal of the Acoustical Society of America, 1995, 97(2):906-917.
[9] KAMAKURA T, SAKAI S, NOMURA H, et al. Parametric audible sounds fields by phase-cancellation excitation of primary waves[J]. The Journal of the Acoustical Society of America, 2008, 123(5):3694.
[10] KAMAKURA T, NOMURA H, SAKAI S. Spatial phase-inversion technique for parametric source with suppressed carrier[J]. The Journal of the Acoustical Society of America, 2009, 125(4):2717.
[11] KAMAKURA T, NOMURA H, AKIYAMA M, et al. Parametric sound fields formed by phase-inversion excitation of primary waves[J]. Acta Acustica United with Acustica, 2011, 97(2):209-218.
[12] FENLON F H. An extension of the Bessel-Fubini series for a mutihle-frequency CW acoustic source of finite amplitude[J]. The Journal of the Acoustical Society of America, 1972, 51(1B):284-289.
[13] 吕君, 赵正予, 周晨, 等. 有限振幅声波间的非线性相互作用对声源远场指向性的影响[J]. 物理学报, 2011, 60(8):084301. LV Jun, ZHAO Zhengyu, ZHOU Chen, et al. Effect of finite-amplitude acoustic wave nonlinear interaction on farfield directivity of sound source[J]. Acta Physica Sinica, 2011, 60(8):084301.
[14] 杨德森, 董雷, 时洁, 等. 大振幅波非线性传播的频率特性[J]. 哈尔滨工程大学学报, 2010, 31(7):928-931. YANG Desen, DONG Lei, SHI Jie, et al. Frequency characteristics of nonlinear propagation of large amplitude waves[J]. Journal of Harbin Engineering University, 2010, 31(7):928-931.
[15] SONESON J E. A parametric study of error in the parabolic approximation of focused axisymmetric ultrasound beams[J]. The Journal of the Acoustical Society of America, 2012, 131(6):EL481-EL486.
[16] SONESON J E. A user-friendly software package for HIFU simulation[C]//Proceedings of the 8th International Symposium on Therapeutic Ultrasound. Minneapolis, Minnesota:AIP, 2009, 1113:165-169.
[17] PINTON G F. Numerical methods for nonlinear wave propagation in ultrasound[D]. Durham:Department of Biomedical Engineering, Duke University, 2007:37-46.
[18] LI Zhongzheng, FANG Erzheng, SHI Shengguo. Study on the calculation method of the KZK equation for parametric array[C]//Processings of the 12th International Conference on Signal Processing (ICSP). Hangzhou, China:IEEE, 2014:139-143.

备注/Memo

备注/Memo:
收稿日期:2014-10-28;改回日期:。
基金项目:水声技术国防科技重点实验室基金资助项目(9140c20010613c20078).
作者简介:杨德森(1957-), 男, 中国工程院院士, 教授, 博士生导师.
通讯作者:杨德森, E-mail: dshyang@hrbeu.edu.cn.
更新日期/Last Update: 2016-02-04