[1]位秀雷,林瑞霖,刘树勇,等.小波和S-G的改进算法及混沌降噪应用[J].哈尔滨工程大学学报,2016,37(03):376-381.[doi:10.11990/jheu.201411076]
 WEI Xiulei,LIN Ruilin,LIU Shuyong,et al.Denoising for chaotic signals based on the improved wavelet transform and S-G method[J].hebgcdxxb,2016,37(03):376-381.[doi:10.11990/jheu.201411076]
点击复制

小波和S-G的改进算法及混沌降噪应用(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
37
期数:
2016年03期
页码:
376-381
栏目:
出版日期:
2016-03-23

文章信息/Info

Title:
Denoising for chaotic signals based on the improved wavelet transform and S-G method
作者:
位秀雷 林瑞霖 刘树勇 许伟
海军工程大学 动力工程学院, 湖北 武汉 430033
Author(s):
WEI Xiulei LIN Ruilin LIU Shuyong XU Wei
College of Power Engineering, Naval University of Engineering, Wuhan 430033, China
关键词:
混沌信号小波降噪分解层数最优小波Savitzky-Golay滤波
分类号:
TN911
DOI:
10.11990/jheu.201411076
文献标志码:
A
摘要:
为降低混沌信号中常见的白噪声及脉冲噪声,提出了改进的小波阈值降噪与S-G(Savitzky-Golay)滤波相结合的方法。小波基函数和分解层数对降噪效果有着重要影响,为取得更好的降噪效果,采用逐层确定最优基小波和分解层数自适应确定方法,并给出了各层阈值的选取方法,最后将改进的加权法应用于S-G小波去噪方法以恢复高频分量中部分有用信号。利用该方法对Lorenz混沌时间序列及实测机械式混沌振动信号进行了去噪研究,结果表明所提方法能将混沌信号信噪比提高近1 dB,自相关函数值提高0.01,是一种有效的混沌信号降噪新方法。

参考文献/References:

[1] NEACSU C, CHESARU V, DAN C, et al. An autonomous chaos generator using oscillator structure[C]//Proceedings of International Semiconductor Conference (CAS). Sinaia: IEEE, 2011, 2: 431-434.
[2] LIM T P, PUTHUSSERYPADY S. Chaotic time series prediction and additive white Gaussian noise[J]. Physics letters A, 2007, 365(4): 309-314.
[3] SAN EMETERIO J L, RODRIGUEZ-HERNANDEZ M A. Wavelet denoising of ultrasonic A-scans for detection of weak signals[C]//Proceedings of the 19th International Conference on Systems, Signals and Image Processing. Vienna: IEEE, 2012: 48-51.
[4] LIU Lei, YU Miao, YANG Ruijuan, et al. Wavelet denoising applied in optical fiber Raman temperature sensor system[J]. Chinese journal of lasers, 2013, 40(6): 1-5.
[5] 滕军, 朱焰煌, 周峰, 等. 自适应分解层数的小波域中值滤波振动信号降噪法[J]. 振动与冲击, 2009, 28(12): 58-62. TENG Jun, ZHU Yanhuang, ZHOU Feng, et al. Vibration signal denoising method based on median filter in wavelet domain with self-adaptive level decomposition[J]. Journal of vibration and shock, 2009, 28(12): 58-62.
[6] 李月琴, 栗苹, 闫晓鹏, 等. 无线电引信信号去噪的最优小波基选择[J]. 北京理工大学学报, 2008, 28(8): 723-726. LI Yueqin, LI Ping, YAN Xiaopeng, et al. Selection of optimal wavelet basis for radio fuze signal denoising[J]. Transactions of Beijing institute of technology, 2008, 28(8): 723-726.
[7] 张华, 陈小宏, 杨海燕. 地震信号去噪的最优小波基选取方法[J]. 石油地球物理勘探, 2011, 46(1): 70-75. ZHANG Hua, CHEN Xiaohong, YANG Haiyan. Optimistic wavelet basis selection in seismic signal noise elimination[J]. Oil geophysical prospecting, 2011, 46(1): 70-75.
[8] 李剑, 杨洋, 程昌奎, 等. 变压器局部放电监测逐层最优小波去噪算法[J]. 高压电技术, 2007, 33(8): 56-60. LI Jian, YANG Yang, CHENG Changkui, et al. Optimum wavelet denoising algorithm for partial discharge online monitoring of transformers[J]. High voltage engineering, 2007, 33(8): 56-60.
[9] 李化, 杨新春, 李剑, 等. 基于小波分解尺度系数能量最大原则的GIS局部放电超高频信号自适应小波去噪[J]. 电工技术学报, 2012, 27(5): 84-91. LI Hua, YANG Xinchun, LI Jian, et al. The maximum energy of wavelet decomposition approximation related adaptive wavelet denoising for partial discharge UHF pulse in GIS[J]. Transactions of China electrotechnical society, 2012, 27(5): 84-91.
[10] 杜文辽, 朱茹敏, 李彦明. 小波滤波分解层数的自适应确定方法[J]. 光电子·激光, 2010, 21(9): 1408-1411. DU Wenliao, ZHU Rumin, LI Yanming. Adaptive selection of optimal decomposition level in filtering algorithm based on wavelet transform[J]. Journal of optoelectronics · laser, 2010, 21(9): 1408-1411.
[11] MIIKKA E. Methods for the classification of biosignals applied to the detection of epileptiform waveforms and to the recognition of physical activity[D]. Tampere: Tampere University of Technology, 2009.
[12] 李文, 刘霞, 段玉波, 等. 基于小波熵和相关性的高分辨率阈值去噪方法[J]. 数据采集与处理, 2013, 28(3): 371-375. LI Wen, LIU Xia, DUAN Yubo, et al. High-resolutiont threshold denoising method based on wavelet entropy and correlation[J]. Journal of data acquisition and processing, 2013, 28(3): 371-375.
[13] YAQUB M F, GONDAL I, KAMRUZZAMAN J. Resonant frequency band estimation using adaptive wavelet decomposition level selection[C]//Proceedings of the 2011 International Conference on Mechatronics and Automation. Beijing: IEEE, 2011: 376-381.
[14] JIANG Shubo, LIN Jinhuo. Octane number detection based on Raman spectra[C]//Proceedings of International Conference on Electrical and Control Engineering. Wuhan: IEEE, 2010: 5365-5368.
[15] ZHOU Zengguang, TANG Ping. VI-quality-based Savitzky-Golay method for filtering time series data[J]. Remote sensing technology and application, 2013, 28(2): 232-239.
[16] 位秀雷, 林瑞霖, 刘树勇, 等. 基于改进小波变换方法的混沌信号去噪研究[J]. 武汉理工大学学报: 交通科学与工程版, 2013, 37(5): 1062-1065. WEI Xiulei, LIN Ruilin, LIU Shuyong, et al. Denoising for chaotic signal based on an improved wavelet transform method[J]. Journal of Wuhan university of technology: transportation science & engineering, 2013, 37(5): 1062-1065.
[17] STARK A J, HSUEH Y T, SEARCY S, et al. Scaling 112 Gb/s optical networks with the nonlinear threshold metric[J]. Journal of lightwave technology, 2012, 30(9): 1291-1298.
[18] 刘云侠, 杨国诗, 贾群. 基于双提升小波的自适应混沌信号降噪[J]. 电子学报, 2011, 39(1): 13-17. LIU Yunxia, YANG Guoshi, JIA Qun. Adaptive noise reduction for chaotic signals based on dual-lifting wavelet transform[J]. Acta electronica sinica, 2011, 39(1): 13-17.

备注/Memo

备注/Memo:
收稿日期:2014-11-25;改回日期:。
基金项目:国家自然科学基金资助项目(51179197,51579242).
作者简介:位秀雷(1988-),男,博士研究生;林瑞霖(1957-),男,教授,博士,博士生导师;刘树勇(1975-),男,副教授,博士.
通讯作者:刘树勇,E-mail:wxlcln@163.com.
更新日期/Last Update: 2016-03-24