[1]汪骥,陈昌毅,李瑞,等.纳米复合电沉积制备钢基超疏水表面工艺探究[J].哈尔滨工程大学学报,2016,37(05):660-665.[doi:10.11990/jheu.201501049]
 WANG Ji,CHEN Changyi,LI Rui,et al.Preparation of a superhydrophobic surface on steel substrate by nanocomposite electrodeposition[J].hebgcdxxb,2016,37(05):660-665.[doi:10.11990/jheu.201501049]
点击复制

纳米复合电沉积制备钢基超疏水表面工艺探究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
37
期数:
2016年05期
页码:
660-665
栏目:
出版日期:
2016-05-25

文章信息/Info

Title:
Preparation of a superhydrophobic surface on steel substrate by nanocomposite electrodeposition
作者:
汪骥123 陈昌毅1 李瑞1 蒋文轩1 于鑫1
1. 大连理工大学 船舶工程学院, 辽宁 大连 116023;
2. 高新船舶与深海开发装备协同创新中心, 辽宁 大连 116023;
3. 大连理工大学 工业装备结构分析国家重点实验室, 辽宁 大连 116024
Author(s):
WANG Ji123 CHEN Changyi1 LI Rui1 JIANG Wenxuan1 YU Xin1
1. School of Naval Architecture, Dalian University of Technology, Dalian 116023, China;
2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Dalian 116023, China;
3. State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China
关键词:
超疏水表面表面技术制备工艺电沉积正交实验设计工艺参数优化纳米复合材料钢基板
分类号:
TG178
DOI:
10.11990/jheu.201501049
文献标志码:
A
摘要:
为解决钢基表面超疏水制备工艺复杂、制备成本昂贵、制备效率低等问题,同时避免使用过往单因素分析方法,本文运用纳米微粒复合电沉积理论,提出了一种在船用Q235基材上制备Ni-nSiO2超疏水复合镀层的新工艺。通过对基础实验设备的改进,结合复合电镀以及复合电刷镀工艺的优点,在基材上构筑了适合超疏水性能的微纳米双重粗糙度结构。通过正交实验法和极差分析对制得的样板进行分析,得到了优化的制备工艺参数。最终,当电流密度为30A/dm2,阳极速度6m/min,沉积时间3min时,可制备出接触角为159.96°的超疏水表面。

参考文献/References:

[1] XUE Chaohua, MA Jianzhong. Long-lived superhydrophobic surfaces[J]. Journal of materials chemistry A, 2013, 1(13): 4146-4161.
[2] PAN Qinmin, LIU Jia, ZHU Qing. A water strider-like model with large and stable loading capacity fabricated from superhydrophobic copper foils[J]. ACS Applied materials & interfaces, 2010, 2(7): 2026-2030.
[3] 石彦龙, 冯晓娟. 超疏水性生物表面的研究进展[J]. 应用化学, 2012, 29(5): 489-497. SHI Yanlong, FENG Xiaojuan. Progess in superhydophobic bio-surfaces[J]. Chinese journal of applied chemistry, 2012, 29(5): 489-497.
[4] 禹营, 汪家道, 陈大融. 超疏水表面在减阻中的应用[J]. 哈尔滨工业大学学报, 2006, 38(S1): 68-70. YU Ying, WANG Jiadao, CHEN Darong. The application of Ultra hydrophobic surface in drag reduction[J]. Journal of Harbin institute of technology, 2006, 38(S1): 68-70.
[5] 田军, 徐锦芬, 薛群基. 低表面能涂层的减阻试验研究[J]. 水动力学研究与进展: A辑, 1997, 12(1): 27-32. TIAN Jun, XU Jinfen, XUE Qunji. An experimental study on the drag reduction of low surface energy coatings[J]. Journal of hydrodynamics, 1997, 12(1): 27-32.
[6] BOINOVICH L B, GNEDENKOV S V, ALPYSBAEVA D A, et al. Corrosion resistance of composite coatings on low-carbon steel containing hydrophobic and superhydrophobic layers in combination with oxide sublayers[J]. Corrosion science, 2012, 55: 238-245.
[7] 陈美玲, 张力明, 杨莉, 等. 低表面能船舶防污涂料的疏水结构及防污性能[J]. 船舶工程, 2010, 32(6): 64-67. CHEN Meiling, ZHANG Liming, YANG Li, et al. Hydrophobic structure and antifouling performance of the low surface energy marine coating[J]. Ship engineering, 2010, 32(6): 64-67.
[8] BARTHLOTT W, NEINHUIS C. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202(1): 1-8.
[9] GAO Xuefeng, JIANG Lei. Biophysics: water-repellent legs of water striders[J]. Nature, 2004, 432(7013): 36.
[10] WANG Yanhua, WANG Wei, ZHONG Lian, et al. Super-hydrophobic surface on pure magnesium substrate by wet chemical method[J]. Applied surface science, 2010, 256(12): 3837-3840.
[11] WAN Yong, WANG Zhongqian, XU Zhen, et al. Fabrication and wear protection performance of superhydrophobic surface on zinc[J]. Applied surface science, 2011, 257(17): 7486-7489.
[12] MAHADIK S A, KAVALE M S, MUKHERJEE S K, et al. Transparent superhydrophobic silica coatings on glass by sol-gel method[J]. Applied surface science, 2010, 257(2): 333-339.
[13] ISHIZAKI T, SAITO N. Rapid formation of a superhydrophobic surface on a magnesium alloy coated with a cerium oxide film by a simple immersion process at room temperature and its chemical stability[J]. Langmuir, 2010, 26(12): 9749-9755.
[14] LARMOUR I A, BELL S E J, SAUNDERS G C. Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition[J]. Angewandte chemie international edition, 2007, 46(10): 1710-1712.
[15] WANG Hui, DAI Dan, WU Xuedong. Fabrication of superhydrophobic surfaces on aluminum[J]. Applied surface science, 2008, 254(17): 5599-5601.
[16] 孙巍, 周雨辰, 陈忠仁. 基于水滴模板法的微纳复合超疏水结构制备的研究[J]. 高分子学报, 2012(12): 1459-1464. SUN Wei, ZHOU Yuchen, CHEN Zhongren. Construction of superhydrophobic surface via secondary processing of honeycomb-patterned substrate[J]. Acta polymerica sinica, 2012(12): 1459-1464.
[17] CHEN Suwen, GUO Bolong, WU Wangsuo. A novel fabrication of superhydrophobic surfaces for universal applicability[J]. Applied physics A, 2011, 105(4): 861-866.
[18] 余建柏, 陈铭. 电刷镀流镀技术及其在产品再制造中的应用[J]. 机械设计与研究, 2008, 24(4): 76-79. YU Jianbai CHEN Ming. Flow plating technology and its application to product remanufacturing[J]. Machine design and research, 2008, 24(4): 76-79.
[19] 徐滨士. 纳米表面工程[M]. 北京: 化学工业出版社, 2004: 200-227.

备注/Memo

备注/Memo:
收稿日期:2015-1-30;改回日期:。
基金项目:国家自然科学基金面上项目(51479030).
作者简介:汪骥(1978-),男,副教授,博士;李瑞(1981-),男,副教授,博士.
通讯作者:李瑞,E-mail:lirui@dlut.edu.cn.
更新日期/Last Update: 2016-06-08