[1]刘少刚,程千驹,赵丹,等.分段线性压电能量收集器机电耦合建模[J].哈尔滨工程大学学报,2016,37(11):1573-1579.[doi:10.11990/jheu.201511034]
 LIU Shaogang,CHENG Qianju,ZHAO Dan,et al.Electromechanical coupling modeling research on the piecewise-linear piezoelectric energy harvester[J].hebgcdxxb,2016,37(11):1573-1579.[doi:10.11990/jheu.201511034]
点击复制

分段线性压电能量收集器机电耦合建模(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
37
期数:
2016年11期
页码:
1573-1579
栏目:
出版日期:
2016-11-25

文章信息/Info

Title:
Electromechanical coupling modeling research on the piecewise-linear piezoelectric energy harvester
作者:
刘少刚 程千驹 赵丹 冯立锋
哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001
Author(s):
LIU Shaogang CHENG Qianju ZHAO Dan FENG Lifeng
College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
分段线性机电耦合振动压电能量收集频带宽度
分类号:
TB123;TN384;O322
DOI:
10.11990/jheu.201511034
文献标志码:
A
摘要:
为了减小现有分段线性压电能量收集器的纯机械模型理论值与实验值之间的误差,提出了装置的机电耦合模型,基于该模型给出了装置发电电压的幅频响应关系式,通过加工实验装置及搭建实验平台得到分段线性压电能量收集器发电性能实验结果。实验值与纯机械模型理论值、机电耦合模型理论值的对比表明:所提出的机电耦合模型相对于纯机械模型能够有效减小理论值与实验值之间的误差。在外部激振加速度为2 m/s2,撞击间距为1 mm条件下,装置发电最大电压值相对误差由15.81%减小到12.72%,工作频率宽度的相对误差由24.42%减小到4.41%。同时,对不同激振加速度及不同撞击间距的研究表明,所提出机电耦合模型更适用于分段线性压电能量收集器的进一步参数优化研究。

参考文献/References:

[1] SAADON S, SIDEK O. A review of vibration-based MEMS piezoelectric energy harvesters[J]. Energy conversion and management, 2011, 52(1): 500-504.
[2] QURESHI E M, SHEN X, CHEN J J. Vibration control laws via shunted piezoelectric transducers: A review[J]. International journal of aeronautical and space sciences, 2014, 15:1-19.
[3] QURESHI E M, SHEN X, CHEN J J. Piezoelectric shunt damping by synchronized switching on negative capacitance and adaptive voltage sources[J]. International journal of aeronautical and space sciences, 2014, 15:396-411.
[4] 綦俊炜, 李一兵, 毕晓艳, 等. 基于线性多用户检测的DS-UWB接收机研究[J]. 应用科技, 2008, 35(5): 42-45.QI Junwei, LI Yibing, BI Xiaoyan, et al. A study of DS-UWB receiver with linear multiuser detection[J]. Applied science and technology, 2008, 35(5): 42-45.
[5] 蓝宇,张凯. 1-1-3型压电复合材料宽带换能器[J]. 哈尔滨工程大学学报, 2011, 32(11): 1479-1483.LAN Yu, ZHANG Kai. Research on 1-1-3 piezocomposite broad-band transducers[J]. Journal of Harbin Engineering University, 2011, 32(11): 1479-1483.
[6] 刘祥建, 陈仁文. 压电振动能量收集装置研究现状及发展趋势[J]. 振动与冲击, 2012, 31(16): 169-176. LIU Xiangjian, CHEN Renwen. Current situation and developing trend of piezoelectric vibration energy harvesters[J]. Journal of vibration and shock, 2012, 31(16): 169-176.
[7] SOLIMAN M S M, ABDEL-RAHMAN E M, EL-SAADANY E F, et al. A wideband vibration-based energy harvester[J]. Journal of micromechanics and microengineering, 2008, 18(11): 115021.
[8] HOFFMANN D, FOLKMER B, MANOLI Y. Analysis and characterization of triangular electrode structures for electrostatic energy harvesting[J]. Journal of micromechanics and microengineering, 2011, 21(10): 104002.
[9] LE C P, HALVORSEN E. MEMS electrostatic energy harvesters with end-stop effects[J]. Journal of micromechanics and microengineering, 2012, 22(7): 074013.
[10] LE C P, HALVORSEN E, YEATMAN E M, et al. Wideband excitation of an electrostatic vibration energy harvester with power-extracting end-stops[J]. Smart saterials and structures, 2013, 22: 075020.
[11] 王宏金, 孟庆丰. 压电振动能量收集器的等效电路建模分析与实验验证[J]. 西安交通大学学报, 2013, 47(10): 75-80. WANG Hongjin, MENG Qingfeng. Equivalent circuit modeling and experimental verification for piezoelectric vibration energy harvester[J]. Journal of Xi’an jiaotong university, 2013, 47(10): 75-80.
[12] SOLIMAN M S M, ABDEL-RAHMAN E M, El-SAADANY E F, et al. A wideband vibration-based energy harvester[J]. Journal of micromechanics and microengineering, 2008, 18(11): 115021.
[13] LIU Huicong, LEE C, KOBAYASHI T, et al. Investigation of a MEMS piezoelectric energy harvester system with a frequency-widened-bandwidth mechanism introduced by mechanical stoppers[J]. Smart materials and structures, 2012, 21(3): 035005.
[14] GU L, LIVEMORE C. Impact-driven, frequency up-converting coupled vibration energy harvesting device for low frequency operation[J]. Smart materials and structures, 2011, 20: 045004.
[15] HALIM M A, PARK J Y. Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation[J]. Sensors and actuators A: physical, 2014, 208: 56-65.
[16] DAQAQ M F, MASANA R, ERTURK A, et al. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion[J]. Applied mechanics reviews, 2014, 66(4): 040801.
[17] 陈予恕. 非线性振动[M]. 天津: 天津科学技术出版社, 1983: 131-137.

备注/Memo

备注/Memo:
收稿日期:2015-11-16。
基金项目:国防技术基础科研项目(Z192013B001).
作者简介:刘少刚(1962-),男,教授,博士生导师,博士.
通讯作者:刘少刚,E-mail:liushaogang@hrbeu.edu.cn.
更新日期/Last Update: 2016-12-03