[1]李楠,李秀坤,刘彩红.变幅值系数的短时Duffing振子阵列检测方法[J].哈尔滨工程大学学报,2016,37(12):1645-1652.[doi:10.11990/jheu.201511062]
 LI Nan,LI Xiukun,LIU Caihong.Detection method of a short-time Duffing oscillator array with variable amplitude coefficients[J].hebgcdxxb,2016,37(12):1645-1652.[doi:10.11990/jheu.201511062]
点击复制

变幅值系数的短时Duffing振子阵列检测方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
37
期数:
2016年12期
页码:
1645-1652
栏目:
出版日期:
2016-12-25

文章信息/Info

Title:
Detection method of a short-time Duffing oscillator array with variable amplitude coefficients
作者:
李楠123 李秀坤12 刘彩红12
1. 哈尔滨工程大学 水声技术重点实验室, 黑龙江 哈尔滨 150001;
2. 哈尔滨工程大学 水声工程学院, 黑龙江 哈尔滨 150001;
3. 东北电力大学 信息工程学院, 吉林 吉林 132012
Author(s):
LI Nan123 LI Xiukun12 LIU Caihong12
1. Acoustic Science and Technology Laboratory, Harbin Engineering University, Harbin 150001, China;
2. College of Underwater Acoustic Engineering, Harbin Engineering University, Harbin 150001, China;
3. College of Information Engineering, Northeast Dianli University, Jilin 132012, China
关键词:
Duffing振子短时包络起伏可变幅值系数Poincare映射集弱信号时域分布
分类号:
TN911.7
DOI:
10.11990/jheu.201511062
文献标志码:
A
摘要:
常规Duffing振子检测方法只能确定待测弱信号的有无及幅值大小,却无法给出其在时域上的分布信息,且待测信号包络有起伏时会引起Duffing振子系统的误判。针对上述问题,本文提出可变幅值系数的短时Duffing振子阵列检测方法。应用互模糊函数推导出随机振幅包络起伏信号通过短时处理可以降低包络起伏因素对Duffing振子检测性能的影响,对信号加时间窗的短时处理可以保证窗内信号近似平稳,并可同时获得待测信号在时域上的分布信息。为克服相图判别法定性分析的不足,降低待测信号与内置策动力合成的总策动力幅值小于跃变阈值时出现的漏报误判概率,提出可变幅值系数的Poincare映射集判别方法,给出了量化统计判别结果。仿真及实测水声信号检测结果表明,在-33 dB的低信噪比背景下仍可实现信号的检测判别。

参考文献/References:

[1] GUCKENHEIMER J, HOLMES P J. Nonlinear oscillations, dynamical systems, and bifurcations of vector fields[M]. New York:Springer-Verlag, 1983:82-92.
[2] BONATTO C, GALLAS J A C, UEDA Y. Chaotic phase similarities and recurrences in a damped-driven Duffing oscillator[J]. Physical review e, 2008, 77(2):026217.
[3] SABARATHINAM S, THAMILMARAN K, BORKOWSKI L, et al. Transient chaos in two coupled, dissipatively perturbed Hamiltonian Duffing oscillators[J]. Communications in nonlinear science and numerical simulation, 2013, 18(11):3098-3107.
[4] YANG J, XIONG Y P, XING J T. Nonlinear power flow analysis of the Duffing oscillator[J]. Mechanical systems and signal processing, 2014, 45(2):563-578.
[5] ROSTAMI M, HAERI M. Undamped oscillations in fractional-order Duffing oscillator[J]. Signal processing, 2015, 107:361-367.
[6] 李月, 石要武, 马海涛, 等. 湮没在色噪声背景下微弱方波信号的混沌检测方法[J]. 电子学报, 2004, 32(1):87-90. LI Yue, SHI Yaowu, MA Haitao, et al. Chaotic detection method for weak square wave signal submerged in colored noise[J]. Acta electronica sinica, 2004, 32(1):87-90.
[7] SHI Huichao, FAN Shangchun, XING Weiwei, et al. Study of weak vibrating signal detection based on chaotic oscillator in MEMS resonant beam sensor[J]. Mechanical systems and signal processing, 2015, 50-51:535-547.
[8] 王坤, 关新平, 丁喜峰, 等. Duffing振子系统周期解的唯一性与精确周期信号的获取方法[J]. 物理学报, 2010, 59(10):6859-6863. WANG Kun, GUAN Xinping, DING Xifeng, et al. Acquisition method of precise periodic signal and uniqueness of periodic solutions of Duffing oscillator system[J]. Acta physica sinica, 2010, 59(10):6859-6863.
[9] DENG Xiaoying, LIU Haibo, LONG Teng. A new complex Duffing oscillator used in complex signal detection[J]. Chinese science bulletin, 2012, 57(17):2185-2191.
[10] JIANG Haibo, ZHANG Liping, YU Jianjiang. Complex dynamics analysis of impulsively coupled Duffing oscillators with ring structure[J]. Chinese physics b, 2015, 24(2):020502.
[11] 丛超, 李秀坤, 宋扬. 一种基于新型间歇混沌振子的舰船线谱检测方法[J]. 物理学报, 2014, 63(6):064301. CONG Cao, LI Xiukun, SONG Yang. A method of detecting line spectrum of ship-radiated noise using a new intermittent chaotic oscillator[J]. Acta physica sinica, 2014, 63(6):064301.
[12] CHANG Yuan, HAO Yi, LI Chunwen. Phase dependent and independent frequency identification of weak signals based on Duffing oscillator via particle swarm optimization[J]. Circuits, systems, and signal processing, 2014, 33(1):223-239.
[13] 牛德智, 陈长兴, 班斐, 等. Duffing振子微弱信号检测盲区消除及检测统计量构造[J]. 物理学报, 2015, 64(6):060503. NIU Dezhi, CHEN Changxing, BAN Fei, et al. Blind angle elimination method in weak signal detection with Duffing oscillator and construction of detection statistics[J]. Acta physica sinica, 2015, 64(6):060503.
[14] 王冠宇, 陶国良, 陈行, 等. 混沌振子在强噪声背景信号检测中的应用[J]. 仪器仪表学报, 1997, 18(2):209-212. WANG Guanyu, TAO Guoliang, CHEN Xing, et al. The application of chaotic oscillator to signal detection in strong background noise[J]. Chinese journal of scientific instrument, 1997, 18(2):209-212. WANG Guanyu, CHEN Dajun, LIN Jianya, et al. The application of chaotic oscillators to weak signal detection[J]. IEEE transactions on industrial electronics, 1999, 46(2):440-444.

备注/Memo

备注/Memo:
收稿日期:2015-11-25
基金项目:国家自然科学基金项目(51279033);黑龙江省自然科学基金项目(F201346).
作者简介:李楠(1973-),女,副教授,博士研究生;李秀坤(1962-),女,教授,博士生导师.
通讯作者:李秀坤,E-mail:lixiukun@hrbeu.edu.cn.
更新日期/Last Update: 2017-01-06