[1]杨静,周雪妍,林泽鸿,等.基于溯源的虚假信息传播控制方法[J].哈尔滨工程大学学报,2016,37(12):1691-1697.[doi:10.11990/jheu.201511076]
 YANG Jing,ZHOU Xueyan,LIN Zehong,et al.False information spread control method based on source tracing[J].hebgcdxxb,2016,37(12):1691-1697.[doi:10.11990/jheu.201511076]
点击复制

基于溯源的虚假信息传播控制方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
37
期数:
2016年12期
页码:
1691-1697
栏目:
出版日期:
2016-12-25

文章信息/Info

Title:
False information spread control method based on source tracing
文章编号:
1685
作者:
杨静1 周雪妍123 林泽鸿34 张健沛1 印桂生1
1. 哈尔滨工程大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001;
2. 哈尔滨工程大学 国家大学科技园, 黑龙江 哈尔滨 150001;
3. 哈尔滨学院 工学院, 黑龙江 哈尔滨 150086;
4. 哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001
Author(s):
YANG Jing1 ZHOU Xueyan123 LIN Zehong34 ZHANG Jianpei1 YIN Guisheng1
1. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China;
2. The National University Science Park, Harbin Engineering University, Harbin 150001, China;
3. College of Engineering, Harbin University, Harbin 150086, China;
4. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
微博溯源虚假信息影响力指数早期重要参与者传播控制
分类号:
TP393
DOI:
10.11990/jheu.201511076
文献标志码:
A
摘要:
为了研究微博传播机制,本文提出一种基于溯源的虚假信息传播控制方法,根据微博转发关系和主题相关性得到级联集合,并结合用户关系网和信息级联关系网确定微博信息的真正发起者。通过文本情感分析和信息级联关系迭代计算节点的影响力指数和从众指数,提取微博信息早期重要参与者。综合发起者和早期重要参与者确定信息源头并进行评估。通过删除优质源头节点和全局高影响力节点来控制虚假信息的传播。在新浪微博数据集上通过实验验证了基于所有溯源节点的虚假信息控制策略效果最优。

参考文献/References:

[1] 丁兆云, 贾焰, 周斌. 微博数据挖掘研究综述[J]. 计算机研究与发展, 2014, 51(4):691-706. DING Zhaoyun, JIA Yan, ZHOU Bin. Survey of data mining for Weibos[J]. Journal of computer research and development, 2014, 51(4):691-706.
[2] 王永刚, 蔡飞志, LUA E K, 等. 一种社交网络虚假信息传播控制方法[J]. 计算机研究与发展, 2012, 49(S1):131-137.WANG Yonggang, CAI Feizhi, LUA E K, et al. A diffusion control method of fake information in social networks[J]. Journal of computer research and development, 2012, 49(S1):131-137.
[3] DALEY D J, KENDAL D G. Stochastic rumours[J]. IMA journal of applied mathematics, 1965, 1(1):42-55.
[4] ZANETTE D H. Dynamics of rumor propagation on small-world networks[J]. Physical review E, 2002, 65(4 Pt 1):041908.
[5] ZHOU Jie, LIU Zonghua, LI Baowen. Influence of network structure on rumor propagation[J]. Physics letters a, 2007, 368(6):458-463.
[6] LESKOVEC J, MCGLOHON M, FALOUTSOS C, et al. Patterns of cascading behavior in large blog graphs[C]//Proceedings of the 2007 SIAM International Conference on Data Mining. Minneapolis, Minnesota, USA:SIAM, 2007, 7:551-556.
[7] LI Hui, BHOWMICK S S, SUN Aixin, et al. Affinity-driven blog cascade analysis and prediction[J]. Data mining and knowledge discovery, 2014, 28(2):442-474.
[8] DABEER O, MEHENDALE P, KARNIK A, et al. Timing tweets to increase effectiveness of information campaigns[C]//Proceedings of the 5th ICWSM. Barcelona, Spain:AAAI, 2011:105-112.
[9] LEHMANN J, GONÇALVES B, RAMASCO J J, et al. Dynamical classes of collective attention in twitter[C]//Proceedings of the 21st International Conference on World Wide Web. Lyon, France:ACM, 2012:251-260.
[10] YANG J, COUNTS S. Predicting the speed, scale, and range of information diffusion in twitter[C]//Proceedings of the 4th International AAAI Conference on Weblogs and Social Media. Washington:AAAI, 2010, 10:355-358.
[11] TSUR O, RAPPOPORT A. What’s in a hashtag?:content based prediction of the spread of ideas in Weiboging communities[C]//Proceedings of the 5th ACM International Conference on Web Search and Data Mining. Seattle, Washington, USA:ACM, 2012:643-652.
[12] 王佰玲, 曲芸, 张永铮, 等. 基于数据流的网页内容分析技术研究[J]. 电子学报, 2013, 41(4):751-756. WANG Bailing, QU Yun, ZHANG Yongzheng, et al. Research on network-traffic based web traffic computing technology[J]. Acta electronica sinica, 2013, 41(4):751-756.
[13] YANG J, LESKOVEC J. Modeling information diffusion in implicit networks[C]//Proceedings of the 10th International Conference on Data Mining. Sydney, Australia:IEEE, 2010:599-608.
[14] MACSKASSY S A, MICHELSON M. Why do people retweet? anti-homophily wins the day![C]//Proceedings of the 5th International AAAI Conference on Weblogs and Social Media. California:The AAAI Press, 2011:209-216.
[15] PAL A, COUNTS S. Identifying topical authorities in Weibos[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong, China:ACM, 2011:45-54.
[16] BAKSHY E, HOFMAN J M, MASON W A, et al. Everyone’s an influencer:quantifying influence on twitter[C]//Proceedings of the 4th ACM International Conference on Web Search and Data Mining. Hong Kong, China:ACM, 2011:65-74.
[17] VER STEEG G, GALSTYAN A. Information transfer in social media[C]//Proceedings of the 21st International Conference on World Wide Web. Lyon, France:ACM, 2012:509-518.
[18] ZHOU Xueyan, YANG Jing. A BBS opinion leader mining algorithm based on topic model[J]. Journal of computational information systems, 2014, 10(6):2571-2578.

相似文献/References:

[1]赵金楼,成俊会,刘家国.兴趣、习惯、交互三重驱动的微博用户动力学模型[J].哈尔滨工程大学学报,2015,(09):1292.[doi:10.11990/jheu.201406021]
 ZHAO Jinlou,CHENG Junhui,LIU Jiaguo.Microblog users’ dynamic model driven by interest, habit, and interaction[J].hebgcdxxb,2015,(12):1292.[doi:10.11990/jheu.201406021]
[2]王昌达,徐芹宝,宋泽,等.WSN中基于逐级重建的Provenance增量压缩[J].哈尔滨工程大学学报,2018,39(04):736.[doi:10.11990/jheu.201609086]
 WANG Changda,XU Qinbao,SONG Ze,et al.Provenance increment compression based on gradual reconstruction in WSNs[J].hebgcdxxb,2018,39(12):736.[doi:10.11990/jheu.201609086]

备注/Memo

备注/Memo:
收稿日期:2015-11-30
基金项目:国家自然科学基金项目(61672179,61370083,61402126);高等学校博士点专项科研基金项目(20122304110012);黑龙江省社科研究规划项目(16XWB01、16TQD03);黑龙江省艺术科学规划课题(2016C030);黑龙江省青年科学基金项目(QC2016083);黑龙江省博士后基金项目(LBH-Z14071);哈尔滨学院青年博士科研启动基金项目(HUDF2016207).
作者简介:杨静(1962-),女,教授,博士生导师;周雪妍(1981-),女,副教授.
通讯作者:周雪妍,E-mail:zhouxueyan_zxy@163.com.
更新日期/Last Update: 2017-01-06