[1]杨海陆,张健沛,杨静.利用2-hop随机游走进行异质网络社区发现[J].哈尔滨工程大学学报,2015,(12):1626-1631.[doi:10.11990/jheu.201411008]
 YANG Hailu,ZHANG Jianpei,YANG Jing.Community detection in heterogeneous social networks using 2-hop random walks[J].hebgcdxxb,2015,(12):1626-1631.[doi:10.11990/jheu.201411008]
点击复制

利用2-hop随机游走进行异质网络社区发现(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年12期
页码:
1626-1631
栏目:
出版日期:
2015-12-25

文章信息/Info

Title:
Community detection in heterogeneous social networks using 2-hop random walks
作者:
杨海陆123 张健沛3 杨静3
1. 哈尔滨理工大学 计算机科学与技术博士后流动站, 黑龙江 哈尔滨 150080;
2. 哈尔滨理工大学 计算机科学与技术学院, 黑龙江 哈尔滨 150080;
3. 哈尔滨工程大学 计算机科学与技术学院, 黑龙江 哈尔滨 150001
Author(s):
YANG Hailu123 ZHANG Jianpei3 YANG Jing3
1. Computer Science and Technology Postdoctoral Workstation, Harbin University of Science and Technology, Harbin 150080;
2. College of Computer Science and Technology, Harbin University of Science and Technology, Harbin 150080, China;
3. College of Computer Science and Technology, Harbin Engineering University, Harbin 150001, China
关键词:
异质社交网络社区识别随机游走相似性度量层次聚类
分类号:
TP301.6
DOI:
10.11990/jheu.201411008
文献标志码:
A
摘要:
针对异质社交网络社区识别问题,提出一种基于随机游走层次社区识别算法。提出异质网络层级吸引力度量函数,构建异质网络随机游走模型;设计了一种基于2-hop互随机游走的异质网络节点相似性度量函数;通过将该相似性函数推广到层次聚类并设计相应的相似矩阵校准方案,异质社区识别任务可以在较短的时间内迭代完成。人工合成网络和真实网络上的仿真实验验证了算法的可行性和有效性。

参考文献/References:

[1] XIE J, KELLEY S, SZYMANSKI B K. Overlapping community detection in networks: the state of the art and comparative study[J]. ACM Computing Surveys, 2013, 45(4): 43.
[2] NEWMAN M E J, GIRVAN M. Finding and evaluating community structure in networks[J]. Physical Review E, 2004, 69(2): 026113.
[3] BRANDES U, DELLING D, GAERTLER M, et al. On modularity clustering[J]. IEEE Transactions on Knowledge and Data Engineering, 2008, 20(2): 172-188.
[4] 邓琨, 张健沛, 杨静. 利用改进遗传算法进行复杂网络社团发现[J]. 哈尔滨工程大学学报, 2013, 34(11): 1438-1444. DENG Kun, ZHANG Jianpei, YANG Jing. Community detection in complex networks using an improved genetic algorithm[J]. Journal of Harbin Engineering University, 2013, 34(11): 1438-1444.
[5] DUAN Lian, STREET W N, LIU Yanchi, et al. Community detection in graphs through correlation[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,USA, 2014: 1376-1385.
[6] LIU Chenlong, LIU Jing, JIANG Zhongzhou. A multiobjective evolutionary algorithm based on similarity for community detection from signed social networks[J]. IEEE Transactions on Cybernetics, 2014, 44(12): 2274-2287.
[7] MUCHA P J, RICHARDSON T, MACON K, et al. Community structure in time-dependent, multiscale, and multiplex networks[J]. Science, 2010, 328(5980): 876-878.
[8] RADICCHI F. Detectability of communities in heterogeneous networks[J]. Physical Review E, 2013, 88(1): 010801.
[9] DONG Xiaowen, FROSSARD P, VANDERGHEYNST P, et al. Clustering with multi-layer graphs: A spectral perspective[J]. IEEE Transactions on Signal Processing, 2012, 60(11): 5820-5831.
[10] BERLINGERIO M, PINELLI F, CALABRESE F. ABACUS: frequent pattern mining-based community discovery in multidimensional networks[J]. Data Mining and Knowledge Discovery, 2013, 27(3): 294-320.
[11] YIN Qiyue, WU Shu, HE Ran, et al. Multi-view clustering via pairwise sparse subspace presentation[J]. Neurocomputing, 2015, 156: 12-21.
[12] FIORI S, KANEKO T, TANAKA T. Tangent-bundle maps on the Grassmann manifold: Application to empirical arithmetic averaging[J]. IEEE Transactions on Signal Processing, 2015, 63(1): 155-168.
[13] DONG Xiaowen, FROSSARD P, VANDERGHEYNST P, et al. Clustering on multi-layer graphs via subspace analysis on Grassmann manifolds[J]. IEEE Transactions on Signal Processing, 2014, 62(4): 905-918.
[14] TANG Lei, WANG Xufei, LIU Huan. Community detection via heterogeneous interaction analysis[J]. Data Mining and Knowledge Discovery, 2012, 25(1): 1-33.
[15] PONS P, LATAPY M. Computing communities in large networks using random walks[J]. Journal of Graph Algorithms and Applications, 2006, 10(2): 191-218.
[16] LANCICHINETTI A, FORTUNATO S. Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities[J]. Physical Review E, 2009, 80: 016118.

备注/Memo

备注/Memo:
收稿日期:2014-11-03;改回日期:。
基金项目:国家自然科学基金资助项目(61202274,61370083,61402126);高等学校博士学科点专项科研基金资助项目(20112304110011,20122304110012).
作者简介:杨海陆(1985-),男,讲师;张健沛(1956-),男,教授,博士生导师.
通讯作者:张健沛,E-mail:zhangjianpei@hrbeu.edu.cn.
更新日期/Last Update: 2016-01-07