[1]胡天宇,朱仁传,范菊.海上浮式风机平台弱非线性耦合动力响应分析[J].哈尔滨工程大学学报,2018,39(07):1132-1137.[doi:10.11990/jheu.201611064]
 HU Tianyu,ZHU Renchuan,FAN Ju.Analysis on weak nonlinear coupled dynamic response of floating offshore wind turbine platform[J].hebgcdxxb,2018,39(07):1132-1137.[doi:10.11990/jheu.201611064]
点击复制

海上浮式风机平台弱非线性耦合动力响应分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年07期
页码:
1132-1137
栏目:
出版日期:
2018-07-05

文章信息/Info

Title:
Analysis on weak nonlinear coupled dynamic response of floating offshore wind turbine platform
作者:
胡天宇 朱仁传 范菊
上海交通大学 船舶海洋与建筑工程学院, 高新船舶与深海开发装备协同创新中心, 上海 200240
Author(s):
HU Tianyu ZHU Renchuan FAN Ju
Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration Equipment, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China
关键词:
瞬时湿表面弱非线性浮式风力机平台间接时域法脉动源格林函数弱散射
分类号:
U661.32
DOI:
10.11990/jheu.201611064
文献标志码:
A
摘要:
为了准确有效地预报海上浮式风力机载荷与运动响应,本文针对系泊平台系统提出一种弱非线性间接时域方法。风力机平台遭遇的入射波作用力和静水恢复力直接在瞬时湿表面上积分计算获得;散射力采用线性势流理论处理;平台系泊力由悬链线方程计算得到。以OC3-Hywind spar风力机平台为对象进行了计算与分析,与线性方法相比,弱非线性方法得到的幅值响应算子(response amplitude operator,RAO)更大,且能够反映波浪力和恢复力与平台响应的相互影响。由于考虑了瞬时湿表面的影响,弱非线性方法计算结果更为合理,可以更好地反映大波高海况的波浪力特征,因而更加适合高海况下的平台运动性能分析。

参考文献/References:

[1] 朱仁传, 缪国平, 范菊, 等. 海上浮式风力机及其动力学问题[J]. 应用数学和力学, 2013, 34(10):1110-1118. ZHU Renchuan, MIAO Guoping, FAN Ju, et al. Offshore floating wind turbines and related dynamic problems[J]. Applied mathematics and mechanics, 2013, 34(10):1110-1118.
[2] 李鹏飞, 程萍, 万德成. 风与波浪联合作用下浮式风机系统的耦合动力分析[C]//第二十七届全国水动力学研讨会文集(下册). 南京, 2015. LI Pengfei, CHENG Ping, WAN Decheng. Coupled dynamic simulation of a floating wind turbine system in wind and waves[C]//Proceedings of the 27th National Conference on Hydrodynamics (Last of Two or Three Volumes). Nanjing, 2015.
[3] JONKMAN J M, BUHL M L JR. FAST user’s guide[R]. NREL/EL-500-38230, Golden, CO:National Renewable Energy Laboratory, 2005.
[4] COULLING A J, GOUPEE A J, ROBERTSON A N, et al. Validation of a FAST semi-submersible floating wind turbine numerical model with DeepCwind test data[J]. Journal of renewable and sustainable energy, 2013, 5(2):023116.
[5] VORPAHL F, STROBEL M, JONKMAN J M, et al. Verification of aero-elastic offshore wind turbine design codes under IEA Wind Task XXⅢ[J]. Wind energy, 2014, 17(4):519-547.
[6] BAYATI I, JONKMAN J, ROBERTSON A, et al. The effects of second-order hydrodynamics on a semisubmersible floating offshore wind turbine[J]. Journal of physics:conference series, 2014, 524(1):012094.
[7] 赵静. 海上风力机系统流体动力性能数值模拟与试验研究[D]. 哈尔滨:哈尔滨工程大学, 2012. ZHAO Jing. Numerical simulation and experimental study on hydrodynamic characteristic of offshore wind turbine system[D]. Harbin:Harbin Engineering University, 2012.
[8] SONG M J, KIM K H, KIM Y. Numerical analysis and validation of weakly nonlinear ship motions and structural loads on a modern containership[J]. Ocean engineering, 2011, 38(1):77-87.
[9] 陈京普, 朱德祥. 船舶在波浪中运动的非线性时域数值模拟[J]. 水动力学研究与进展, 2010, 25(6):830-836. CHEN Jingpu, ZHU Dexiang. Numerical simulations of nonlinear ship motions in waves by a rankine panel method[J]. Chinese journal of hydrodynamics, 2010, 25(6):830-836.
[10] 刘应中, 缪国平. 船舶在波浪上的运动理论[M]. 上海:上海交通大学出版社, 1987.LIU Yingzhong, MIAO Guoping. Ship motion theory on wave[M]. Shanghai:Shanghai Jiao Tong University Press, 1987.
[11] FALTINSEN O. Sea loads on ships and offshore structures[M]. Cambridge:Cambridge University Press, 1993.
[12] JONKMAN J M. Definition of the floating system for phase IV of OC3[M]. Golden, CO, USA:National Renewable Energy Laboratory, 2010.
[13] DNV. SESAM user’s manual[J]. PROBAN distributions, 1996, 1:4. 2-01.

备注/Memo

备注/Memo:
收稿日期:2016-11-20。
基金项目:国家重点基础研究发展计划项目(2014CB046203);国家自然科学基金项目(51479117).
作者简介:胡天宇(1991-),男,硕士研究生;朱仁传(1969-),男,教授,博士生导师.
通讯作者:朱仁传,E-mail:renchuan@sjtu.edu.cn
更新日期/Last Update: 2018-07-07