[1]王立国,赵亮,刘丹凤.SVM在高光谱图像处理中的应用综述[J].哈尔滨工程大学学报,2018,39(06):973-983.[doi:10.11990/jheu.201704074]
 WANG Liguo,ZHAO Liang,LIU Danfeng.A review on the application of SVM in hyperspectral image processing[J].hebgcdxxb,2018,39(06):973-983.[doi:10.11990/jheu.201704074]
点击复制

SVM在高光谱图像处理中的应用综述(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年06期
页码:
973-983
栏目:
出版日期:
2018-06-05

文章信息/Info

Title:
A review on the application of SVM in hyperspectral image processing
作者:
王立国 赵亮 刘丹凤
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
WANG Liguo ZHAO Liang LIU Danfeng
College of Information and Communications Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
高光谱支持向量机分类端元选择光谱解混亚像元定位异常检测
分类号:
TP753
DOI:
10.11990/jheu.201704074
文献标志码:
A
摘要:
高光谱遥感已经成为遥感领域的前沿技术,在军事以及国民经济中发挥着重要作用。支持向量机(support vector machine, SVM)在解决小样本、非线性和高维模式等问题中具有特有的优势,因而被广泛用于高光谱数据处理。在高光谱图像的波段选择、分类、端元选择、光谱解混及亚像元定位、异常检测等主要领域,SVM模型皆因其特性而表现出独特优势并已广泛应用。分析了高光谱图像特性,总结了当前各领域的发展现状及主要的处理方法,并对SVM方法在各领域中的应用及优势进行了阐述。

参考文献/References:

[1] JIMENEZ L O, LANDGREBE D A. Supervised classification in high-dimensional space:geometrical, statistical, and asymptotical properties of multivariate data[J]. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews), 1998, 28(1):39-54.
[2] 杨永崇, 郭岚. 数字地图的分辨率[J]. 测绘科学, 2007, 32(4):185-186, 165. YANG Yongchong, GUO Lan. Resolution of digital maps[J]. Science of surveying and mapping, 2007, 32(4):185-186, 165.
[3] 顾松刚, 史培军. 基于混合象元分解的辽东湾海冰资源量估算[J]. 北京师范大学学报(自然科学版), 2004, 40(3):411-416. GU Songgang, SHI Peijun. Estimation of sea ice resources in Liaodong Bay on decomposing mixed pixels[J]. Journal of Beijing normal university (natural science), 2004, 40(3):411-416.
[4] EVGENIOU T, PONTIL M. Support vector machines:theory and applications[C]//Proceeding of Machine Learning and Its Applications. London, UK, 2001:249-257.
[5] VAPNIK V N. 统计学习理论的本质[M]. 张学工, 译. 北京:清华大学出版社, 2000:2-6. VAPNIK V N. Statistical learning theory[M]. ZHANG Xuegong. Beijing:Tsinghua University Press, 2000:2-6.
[6] 郭春燕. 基于支持向量机的高光谱遥感图像分类[D]. 哈尔滨:哈尔滨工程大学, 2007. GUO Chunyan. Hyperspectral imagery classification based on support vector machine[D]. Harbin:Harbin Engineering University, 2007.
[7] SMOLA A J. Learning with kernels[M]. Sankt Augustin:Gmd Forschungszentrum Informationstechnik, 1998.
[8] 宋杰, 唐焕文. 基于线性规划的ν-支持向量机分类器[J]. 大连理工大学学报, 2005, 45(2):303-307.SONG Jie, TANG Huanwen. ν-support vector machine classifier based on linear programming[J]. Journal of Dalian University of Technology, 2005, 45(2):303-307.
[9] SUYKENS J A K, DE BRABANTER J, LUKAS L, et al. Weighted least squares support vector machines:robustness and sparse approximation[J]. Neurocomputing, 2002, 48(1/2/3/4):85-105.
[10] SONG Qing, HU Wenjie, XIE Wenfang. Robust support vector machine with bullet hole image classification[J]. IEEE transactions on systems, man, and cybernetics, part C (applications and reviews), 2002, 32(4):440-448.
[11] TRAFALIS T B, ALWAZZI S A. Robust optimization in support vector machine training with bounded errors[C]//Proceedings of the International Joint Conference on Neural Networks. Portland, United States, 2003:2039-2042.
[12] TIPPING M E. Sparse Bayesian learning and the relevance vector machine[J]. Journal of machine learning research, 2001, 1:211-244.
[13] TAX D M J, DUIN R P W. Support vector data description[J]. Machine learning, 2004, 54(1):45-66.
[14] 范昕炜. 支持向量机算法的研究及其应用[D]. 杭州:浙江大学, 2003:1-24.FAN Xinwei. Support vector machine and its applications[D]. Hangzhou:Zhejiang University, 2003.
[15] SCHÖLKOPF B, BURGES C J C, SMOLA A J. Advances in kernel methods:support vector learning[M]. Cambridge:MIT Press, 1999.
[16] KEERTHI S S, SHEVADE S K, BHATTACHARYYA C, et al. A fast iterative nearest point algorithm for support vector machine classifier design[J]. IEEE transactions on neural networks, 2000, 11(1):124-136.
[17] SHEVADE S K, KEERTHI S S, BHATTACHARYYA C, et al. Improvements to the SMO algorithm for SVM regression[J]. IEEE transactions on neural networks, 2000, 11(5):1188-1193.
[18] WESTON J, WATKINS C. Multi-class support vector machines:SD2TR298204[R]. London:Royal Holloway University of London, 1998.
[19] BOTTOU L, CORTES C, DENKER J S, et al. Comparison of classifier methods:a case study in handwritten digit recognition[C]//Proceedings of the 12th IAPR International Conference on Pattern Recognition. Jerusalem, 1994:77-87.
[19] KREßEL U H G. Pairwise classification and support vector machines[M]. Cambridge, MA:MIT Press, 1999.
[20] PLATT J C, CRISTIANINI N, SHAWE-TAYLOR J. Large margin DAGs for multiclass classification[C]//Advances in Neural Information Processing Systems. Dener, United States, 2000:547-553.
[21] ALLWEIN E L, SCHAPIRE R E, SINGER Y. Reducing multiclass to binary:a unifying approach for margin classifiers[J]. Journal of machine learning research, 2000, 1:113-141.
[22] MELGANI F, BRUZZONE L. Classification of hyperspectral remote sensing images with support vector machines[J]. IEEE transactions on geoscience and remote sensing, 2004, 42(8):1778-1790.
[23] 马波. 支持向量机多类分类算法的分析与设计[D]. 扬州:扬州大学, 2008.MA Bo. The analysis and design for the algorithms of multiclass classification based on SVM[D]. Yangzhou:Yangzhou University, 2008.
[24] 王立国, 张晔, 谷延锋. 支持向量机多类目标分类器的结构简化研究[J]. 中国图象图形学报, 2005, 10(5):571-574. WANG Liguo, ZHANG Ye, GU Yanfeng. The research of simplification of structure of multi-class classifier of support vector machine[J]. Journal of image and graphics, 2005, 10(5):571-574.
[25] 刘健, 刘忠, 熊鹰. 改进的二叉树支持向量机多类分类算法研究[J]. 计算机工程与应用, 2010, 46(33):117-120. LIU Jian, LIU Zhong, XIONG Ying. Improved multi-category support vector machines based on binary tree[J]. Computer engineering and applications, 2010, 46(33):117-120.
[26] DEVIJVER P A, KITTLER J. Pattern recognition:a statistical approach[M]. Englewood Cliffs, NJ:Prentice-Hall, 1982.
[27] HERMES L, BUHMANN J M. Feature selection for support vector machines[C]//Proceedings of the 15th International Conference on Pattern Recognition. Barcelona, 2000, 2:712-715.
[28] WEBB A R, COPSEY K D. Statistical pattern recognition[M]. 3rd ed. Chichester:Wiley, 2011.
[29] 王立国, 谷延锋, 张晔. 基于支持向量机和子空间划分的波段选择方法[J]. 系统工程与电子技术, 2005, 27(6):974-977. WANG Liguo, GU Yanfeng, ZHANG Ye. Band selection method based on combination of support vector machines and subspatial partition[J]. Systems engineering and electronics, 2005, 27(6):974-977.
[30] PENG Hanchuan, LONG Fuhui, DING C. Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy[J]. IEEE transactions on pattern analysis and machine intelligence, 2005, 27(8):1226-1238.
[31] 吴昊, 李士进, 林林, 等. 多策略结合的高光谱图像波段选择新方法[J]. 计算机科学与探索, 2010, 4(5):464-472.WU Hao, LI Shijin, LIN Lin, et al. Multiple-strategy combination based approach to band selection for hyper-spectral image classification[J]. Journal of frontiers of computer science and technology, 2010, 4(5):464-472.
[32] 苏红军, 盛业华, YANG He, 等. 基于正交投影散度的高光谱遥感波段选择算法[J]. 光谱学与光谱分析, 2011, 31(5):1309-1313.SU Hongjun, SHENG Yehua, YANG He, et al. Orthogonal projection divergence-based hyperspectral band selection[J]. Spectroscopy and spectral analysis, 2011, 31(5):1309-1313.
[33] CHION C, LANDRY J A, DA COSTA L. A genetic-programming-based method for hyperspectral data information extraction:agricultural applications[J]. IEEE transactions on geoscience and remote sensing, 2008, 46(8):2446-2457.
[34] 丁胜, 袁修孝, 陈黎. 粒子群优化算法用于高光谱遥感影像分类的自动波段选择[J]. 测绘学报, 2010, 39(3):257-263. DING Sheng, YUAN Xiuxiao, CHEN Li. Automatic band selection of hyperspectral remote sensing image classification using particle swarm optimization[J]. Acta geodaetica et cartographica sinica, 2010, 39(3):257-263.
[35] 吴一全, 吴超. 基于小波和支持向量回归的高光谱遥感图像压缩[J]. 宇航学报, 2011, 32(3):620-626.WU Yiquan, WU Chao. Hyperspectral remote sensing image compression based on wavelet and support vector regression[J]. Journal of astronautics, 2011, 32(3):620-626.
[36] ROBINSON J, KECMAN V. Combining support vector machine learning with the discrete cosine transform in image compression[J]. IEEE transactions on neural networks, 2003, 14(4):950-958.
[37] 李元诚, 焦润海, 李波. 一种基于支持向量机的小波图像压缩方法[J]. 北京航空航天大学学报, 2006, 32(5):598-602. LI Yuancheng, JIAO Runhai, LI Bo. Wavelet image compression based on support vector machines[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(5):598-602.
[38] 张丽萍, 李元诚. 基于支持向量机的遥感图像压缩方法[J]. 计算机工程与应用, 2006, 42(27):200-202. ZHANG Liping, LI Yuancheng. Remote sensing image compression based on support vector machines[J]. Computer engineering and applications, 2006, 42(27):200-202.
[39] 夏建涛. 基于机器学习的高维多光谱数据分类[D]. 西安:西北工业大学, 2002. XIA Jiantao. High dimensional multispectral data classification by machine learning[D]. Xi’an:Northwestern Polytechnical University, 2002.
[40] 刘志刚. 支撑向量机在光谱遥感影像分类中的若干问题研究[D]. 武汉:武汉大学, 2004. LIU Zhigang. Key problems of applying support vector machines to the classification of spectral remote sensing imagery[D]. Wuhan:Wuhan University, 2004.
[41] CAMPS-VALLS G, GOMEZ-CHOVA L, MUNOZ-MARI J, et al. Composite kernels for hyperspectral image classification[J]. IEEE geoscience and remote sensing letters, 2006, 3(1):93-97.
[42] WINTER M E, LUCEY P G, STEUTEL D. Examining hyperspectral unmixing error reduction due to stepwise unmixing[C]//Proceedings of the SPIE Volume 5093, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery. Orlando, Florida, 2003, 5093:380-389.
[43] JI Bahong, CHANG C I, JENSEN J L, et al. Unsupervised constrained linear fisher’s discriminant analysis for hyperspectral image classification[C]//Proceedings of the 49th Annual Meeting. Denver, 2004, 5546:2-4.
[44] 林超. 基于超球体多类支持向量机的高光谱遥感影像分类[D]. 长沙:中南大学, 2011. LIN Chao. The classification of hyperspectral remote sensing image based on hyper sphere multi-class support vector machine[D]. Changsha:Central South University, 2011.
[45] 董超, 田联房, 赵慧洁. 遗传关联向量机高光谱影像分类[J]. 上海交通大学学报, 2011, 45(10):1516-1520.DONG Chao, TIAN Lianfang, ZHAO Huijie. Hyperspectral image classification by genetic relevance vector machine[J]. Journal of Shanghai Jiaotong university, 2011, 45(10):1516-1520.
[46] 高恒振, 万建伟, 粘永健, 等. 一种基于谱域-空域组合特征支持向量机的高光谱图像分类算法[J]. 宇航学报, 2011, 32(4):917-921. GAO Hengzhen, WAN Jianwei, NIAN Yongjian, et al. Hyperspectral image classification algorithm based on spectral-spatial hybrid features and SVM[J]. Journal of astronautics, 2011, 32(4):917-921.
[47] 王立国, 邓禄群, 张晶. 基于线性最小二乘支持向量机的光谱端元选择算法[J]. 光谱学与光谱分析, 2010, 30(3):743-747. WANG Liguo, DENG Luqun, ZHANG Jing. Endmember selection algorithm based on linear least square support vector machines[J]. Spectroscopy and spectral analysis, 2010, 30(3):743-747.
[48] HAJIGHORBANI M, HASHEMI S M R, BROUMANDNIA A, et al. A review of some semi-supervised learning methods[J]. Knowl-Based Eng Innov, 2016, 2(4):250-259.
[49] CAMPS-VALLS G, MARSHEVA T V B, ZHOU Dengyong. Semi-supervised graph-based hyperspectral image classifycation[J]. IEEE transactions on geoscience and remote sensing, 2007, 45(10):3044-3054.
[50] 郝思媛. 空谱协作的高光谱图像分类方法研究[D]. 哈尔滨:哈尔滨工程大学, 2015. HAO Siyuan. Research on spatial-spectral collaborative classification for hyperspectral image[D]. Harbin:Harbin Engineering University, 2015.
[51] GU Yanfeng, FENG Kai. Optimized laplacian SVM with distance metric learning for hyperspectral image classification[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2013, 6(3):1109-1117.
[52] MUNOZ-MARI J, BOVOLO F, GOMEZ-CHOVA L, et al. Semisupervised one-class support vector machines for classification of remote sensing data[J]. IEEE transactions on geoscience and remote sensing, 2010, 48(8):3188-3197.
[53] HUO Lianzhi, TANG Ping, ZHANG Zheng, et al. Semisupervised classification of remote sensing images with hierarchical spatial similarity[J]. IEEE geoscience and remote sensing letters, 2015, 12(1):150-154.
[54] 王立国, 张晶, 刘丹凤, 等. 从端元选择到光谱解混的距离测算方法[J]. 红外与毫米波学报, 2010, 29(6):471-475. WANG Liguo, ZHANG Jing, LIU Danfeng, et al. Distance measurement based methods from endmember selection to spectral unmixing[J]. Journal of infrared and millimeter waves, 2010, 29(6):471-475.
[55] 赵春晖, 齐滨, 王玉磊. 一种改进的N-FINDR高光谱端元提取算法[J]. 电子与信息学报, 2012, 34(2):499-503.ZHAO Chunhui, QI Bin, WANG Yulei. An improved N-FINDR hyperspectral endmember extraction algorithm[J]. Journal of electronics & information technology, 2012, 34(2):499-503.
[56] 王立国, 赵春晖, 毕晓君. 端元选择算法在波段选择中的应用[J]. 吉林大学学报(工学版), 2007, 37(4):915-919. WANG Liguo, ZHAO Chunhui, BI Xiaojun. Application of endmember extraction method to band selection[J]. Journal of Jilin University (engineering and technology edition), 2007, 37(4):915-919.
[57] CHANG C I, JI Baohong. Weighted abundance-constrained linear spectral mixture analysis[J]. IEEE transactions on geoscience and remote sensing, 2006, 44(2):378-388.
[58] 何青, 熊桢. 基于邻域的混合象元解译[J]. 北方交通大学学报, 1999, 23(4):118-121. HE Qing, XIONG Zhen. Neighbor-field-based mixed pixel interpretation[J]. Journal of northern Jiaotong university, 1999, 23(4):118-121.
[59] LUO Junwu, KING R L, YOUNAN N. An unmixing algorithm based on vicinal information[C]//Proceedings of International Geoscience and Remote Sensing Symposium. Toronto, Ontario, Canada, 2002:1453-1455.
[60] BROWN M, LEWIS H G, GUNN S R. Linear spectral mixture models and support vector machines for remote sensing[J]. IEEE transactions on geoscience and remote sensing, 2000, 38(5):2346-2360.
[61] 王立国, 张晔, 陈浩. 基于鲁棒支持向量机的光谱解译[J]. 吉林大学学报(工学版), 2007, 37(1):155-159. WANG Liguo, ZHANG Ye, CHEN Hao. Spectral unmixing based on robust support vector machine[J]. Journal of Jilin University (engineering and technology edition), 2007, 37(1):155-159.
[62] FOODY G M. Relating the land-cover composition of mixed pixels to artificial neural network classification output[J]. Photogrammetric engineering and remote sensing, 1996, 62(5):491-499.
[63] 吴波, 张良培, 李平湘. 基于支撑向量机概率输出的高光谱影像混合像元分解[J]. 武汉大学学报(信息科学版), 2006, 31(1):51-54. WU Bo, ZHANG Liangpei, LI Pingxiang. Unmixing of hyperspectral imagery based on probabilistic outputs of support vector machines[J]. Geomatics and information science of Wuhan University, 2006, 31(1):51-54.
[64] 李慧, 王云鹏, 李岩, 等. 基于SVM和PWC的遥感影像混合像元分解[J]. 测绘学报, 2009, 38(4):318-323. LI Hui, WANG Yunpeng, LI Yan, et al. Unmixing of remote sensing images based on support vector machines and pairwise coupling[J]]. Acta geodaetica et cartographica sinica, 2009, 38(4):318-323.
[65] 王立国, 张晶. 基于线性光谱混合模型的光谱解混改进模型[J]. 光电子·激光, 2010, 21(8):1222-1226. WANG Liguo, ZHANG Jing. An improved spectral unmixing modeling based on linear spectral mixing modeling[J]. Journal of optoelectronics·laser, 2010, 21(8):1222-1226.
[66] 杨国鹏, 周欣, 余旭初, 等. 基于相关向量机的高光谱影像混合像元分解[J]. 电子学报, 2010, 38(12):2751-2756. YANG Guopeng, ZHOU Xin, YU Xuchu, et al. Relevance vector machine for hyperspectral imagery unmixing[J]. Acta electronica sinica, 2010, 38(12):2751-2756.
[67] 李慧, 王云鹏, 李岩, 等. 基于形态学和支持向量的遥感图像混合像元分解[J]. 遥感技术与应用, 2009, 24(1):114-119. LI Hui, WANG Yunpeng, LI Yan, et al. Unmixing remote sensing imagery based on morphology and support vector machines[J]. Remote sensing technology and application, 2009, 24(1):114-119.
[68] ATKINSON P M. Super-resolution target mapping from soft classified remotely sensed imagery[C]//Proceedings of the 5th International Conference on GeoComputation. Leeds, 2001.
[69] TATEM A J, LEWIS H G, ATKINSON P M, et al. Multiple-class land-cover mapping at the sub-pixel scale using a hopfield neural network[J]. International journal of applied earth observation and geoinformation, 2001, 3(2):184-190.
[70] VERHOEYE J, DE WULF R. Land cover mapping at sub-pixel scales using linear optimization techniques[J]. Remote sensing of environment, 2002, 79(1):96-104.
[71] MERTENS K, VERBEKE L, DE WULF R. Sub-pixel mapping with neural networks:real-world spatial configurations learned from artificial shapes[C]//Proceedings of the 4th International Symposium on Remote Sensing and Urban Areas. Regensburg, 2003.
[72] MAULIK U, CHAKRABORTY D. Learning with transductive SVM for semi-supervised pixel classification of remote sensing imagery[J]. ISPRS journal of photogrammetry and remote sensing, 2013, 77:66-78.
[73] WANG Qunming, WANG Liguo, LIU Danfeng, et al. Sub-pixel mapping for land class with linear features using least square support vector machine[J]. Infrared and laser engineering, 2012, 41(6):1669-1675.
[74] 潘志松, 陈斌, 缪志敏, 等. One-Class分类器研究[J]. 电子学报, 2009, 37(11):2496-2503.PAN Zhisong, CHEN Bin, MIAO Zhimin, et al. Overview of study on one-class classifiers[J]. Acta electronica sinica, 2009, 37(11):2496-2503.
[75] TAX D M J, DUIN R P W. Support vector data description[J]. Machine learning, 2004, 54(1):45-46.
[76] 谌德荣, 宫久路, 陈乾, 等. 基于样本分割的快速高光谱图像异常检测支持向量数据描述方法[J]. 兵工学报, 2008, 29(9):1049-1053.CHEN Derong, GONG Jiulu, CHEN Qian, et al. Support vector data description for fast anomaly detection in hyperspectral imagery based on sample segmentation[J]. Acta armamentarii, 2008, 29(9):1049-1053.
[77] 王晓飞. 高光谱图像分辨率增强及在小目标检测中的应用研究[D]. 哈尔滨:哈尔滨工业大学, 2011. WANG Xiaofei. Hyperspectral image resolution enhancement and its application on small target detection[D]. Harbin:Harbin Institute of Technology, 2011.
[78] 燕继坤, 王勇, 曹春霞, 等. 样本错误加权的支持向量数据描述[J]. 计算机工程, 2005, 31(2):24-26. YAN Jikun, WANG Yong, Cao Chunxia, et al. Example error weighted support vector data description[J]. Computer engineering, 2005, 31(2):24-26.
[79] 谌德荣, 宫久路, 何光林, 等. 高光谱图像全局异常检测RFS-SVDD算法[J]. 宇航学报, 2010, 31(1):228-232.CHEN Derong, GONG Jiulu, HE Guanglin, et al. A RFS-SVDD algorithm for hyperspectral global anomaly detection[J]. Journal of astronautics, 2010, 31(1):228-232.
[80] 梅锋, 赵春晖, 王立国, 等. 基于支持向量描述的自适应高光谱异常检测算法[J]. 光子学报, 2009, 38(11):2820-2825.MEI Feng, ZHAO Chunhui, WANG Liguo, et al. Support vector data description based on adaptive anomaly detection method in hyperspectral imagery[J]. Acta photonica sinica, 2009, 38(11):2820-2825.
[81] SING A. Review article digital change detection techniques using remotely-sensed data[J]. International journal of remote sensing, 1989, 10(6):989-1003.
[82] BOVOLO F, BRUZZONE L, MARCONCINI M. A novel approach to unsupervised change detection Based on a semisupervised SVM and a similarity measure[J]. IEEE transactions on geoscience and remote sensing, 2008, 46(7):2070-2082.
[83] 赵磊, 王斌, 张立明. 基于分割窗半监督支持向量机的遥感图像变化检测[J]. 复旦学报(自然科学版), 2010, 49(2):190-196. ZHAO Lei, WANG Bin, ZHANG Liming, et al. Change detection for remotely sensed images based on split window and semi-supervised SVM[J]. Journal of Fudan University (natural science), 2010, 49(2):190-196.
[84] 彭彦昆, 黄慧, 王伟, 等. 基于LS-SVM和高光谱技术的玉米叶片叶绿素含量检测[J]. 江苏大学学报(自然科学版), 2011, 32(2):125-128, 174.PENG Yankun, HUANG Hui, WANG Wei, et al. Rapid detection of chlorophyll content in corn leaves by using least squares-support vector machines and hyperspectral images[J]. Journal of Jiangsu University (natural science edition), 2011, 32(2):125-128, 174.
[85] 万相梅, 黄敏, 朱启兵. 基于高光谱散射图像的苹果压缩硬度和汁液含量无损检测[J]. 食品工业科技, 2012, 33(6):71-74, 78.WANG Xiangmei, HUANG Min, ZHU Qibing, et al. Non-destructive detection for compression hardness and juiciness in apple based on hyperspectral scattering image[J]. Science and technology of food industry, 2012, 33(6):71-74, 78.
[86] 王晓. 基于高光谱图像及近红外光谱技术的水果表面农药残留的无损检测研究[D]. 南昌:江西农业大学, 2011. WANG Xiao. The nondestructive inspection research of pesticide residues contamination on fruit surface based on hyperspectral imaging and near infrared spectroscopy technology[D]. Nanchang:Jiangxi Agricultural University, 2011.

相似文献/References:

[1]朱广平,孙辉,陈文剑,等.混响背景中信号检测的特征核支持向量机[J].哈尔滨工程大学学报,2009,(01):52.
 ZHU Guangping,SUN Hui,CHEN Wen-jian,et al.Feature kernel support vector machines for signal detection with reverberation[J].hebgcdxxb,2009,(06):52.
[2]赵春晖,朱志球.二进脊波变换的高光谱遥感图像融合分类[J].哈尔滨工程大学学报,2008,(11):1222.
 ZHAO Chun-hui,ZHU Zhi-qiu.Fusion classification of hyperspectral remote sensing images by dyadic ridgelet transform[J].hebgcdxxb,2008,(06):1222.
[3]张健沛,赵莹,杨静.最小二乘支持向量机的半监督学习算法[J].哈尔滨工程大学学报,2008,(10):1088.
 ZHANG Jian-pei,ZHAO Ying,YANG Jing.Semi-supervised learning algorithm with a least square support vector machine[J].hebgcdxxb,2008,(06):1088.
[4]杜伟东,李海森,魏玉阔,等.基于SVM的决策融合鱼类识别方法[J].哈尔滨工程大学学报,2015,(05):623.[doi:10.3969/j.issn.1006-7043.201403083]
 DU Weidong,LI Haisen,WEI Yukuo,et al.Decision fusion fish identification using SVM and its experimental study[J].hebgcdxxb,2015,(06):623.[doi:10.3969/j.issn.1006-7043.201403083]
[5]牛清宁,周志强,金立生,等.基于眼动特征的疲劳驾驶检测方法[J].哈尔滨工程大学学报,2015,(03):394.[doi:10.3969/j.issn.1006-7043.201311044]
 NIU Qingning,ZHOU Zhiqiang,JIN Lisheng,et al.Detection of driver fatigue based on eye movements[J].hebgcdxxb,2015,(06):394.[doi:10.3969/j.issn.1006-7043.201311044]
[6]李秀坤,孟祥夏.水下目标回波和混响在听觉感知特征空间的分类[J].哈尔滨工程大学学报,2015,(09):1183.[doi:10.11990/jheu.201406019]
 LI Xiukun,MENG Xiangxia.Classification of underwater target echoes and reverberation in auditory perception feature spaces[J].hebgcdxxb,2015,(06):1183.[doi:10.11990/jheu.201406019]
[7]赵春晖,崔士玲,赵艮平.改进的多端元高光谱解混算法[J].哈尔滨工程大学学报,2015,(09):1281.[doi:10.11990/jheu.201405042]
 ZHAO Chunhui,CUI Shiling,ZHAO Genping.An improved multi-endmember hyperspectral unmixing algorithm[J].hebgcdxxb,2015,(06):1281.[doi:10.11990/jheu.201405042]
[8]王振武,孙佳骏,尹成峰.改进粒子群算法优化的支持向量机及其应用[J].哈尔滨工程大学学报,2016,37(12):1728.[doi:10.11990/jheu.201601005]
 WANG Zhenwu,SUN Jiajun,YIN Chengfeng.A support vector machine based on an improved particle swarm optimization algorithm and its application[J].hebgcdxxb,2016,37(06):1728.[doi:10.11990/jheu.201601005]
[9]王立国,李阳.融合主动学习的高光谱图像半监督分类[J].哈尔滨工程大学学报,2017,38(08):1322.[doi:10.11990/jheu.201606046]
 WANG Liguo,LI Yang.Semi-supervised classification for hyperspectral image collaborating with active learning algorithm[J].hebgcdxxb,2017,38(06):1322.[doi:10.11990/jheu.201606046]
[10]刘里,肖迎元.基于术语长度和语法特征的统计领域术语抽取[J].哈尔滨工程大学学报,2017,38(09):1437.[doi:10.11990/jheu.201605037]
 LIU Li,XIAO Yingyuan.A statistical domain terminology extraction method based on word length and grammatical feature[J].hebgcdxxb,2017,38(06):1437.[doi:10.11990/jheu.201605037]

备注/Memo

备注/Memo:
收稿日期:2017-04-24。
基金项目:国家自然科学基金项目(61675051);黑龙江省自然科学基金项目(F201409).
作者简介:王立国(1974-),男,教授,博士生导师.
通讯作者:王立国,E-mail:wangliguo@hrbeu.edu.cn
更新日期/Last Update: 2018-06-01