[1]邓宗才,张秀丽.GFRP筋纤维混凝土圆柱轴压性能研究[J].哈尔滨工程大学学报,2018,39(10):1617-1624.[doi:10.11990/jheu.201704103]
 DENG Zongcai,ZHANG Xiuli.Axial compressive behavior of circular concrete columns reinforced with GFRP bars and spirals[J].hebgcdxxb,2018,39(10):1617-1624.[doi:10.11990/jheu.201704103]
点击复制

GFRP筋纤维混凝土圆柱轴压性能研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年10期
页码:
1617-1624
栏目:
出版日期:
2018-10-05

文章信息/Info

Title:
Axial compressive behavior of circular concrete columns reinforced with GFRP bars and spirals
作者:
邓宗才 张秀丽
北京工业大学 城市与重大工程安全减灾省部共建重点实验室, 北京 100124
Author(s):
DENG Zongcai ZHANG Xiuli
The Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China
关键词:
轴压性能玻璃纤维增强聚合物承载力本构模型延性约束效率
分类号:
TU377.9
DOI:
10.11990/jheu.201704103
文献标志码:
A
摘要:
为研究配筋种类、纵筋配筋率、箍筋间距和箍筋直径对纤维混凝土柱轴压性能的影响, 对7个玻璃纤维增强聚合物、筋聚乙烯醇纤维混凝土柱、1个钢筋PVA纤维混凝土柱和1个未配筋PVA纤维混凝土柱进行轴压试验。通过研究试件的破坏过程和破坏形态, 建立了轴压承载力、峰值强度、峰值应变计算公式, 得到适合GFRP筋约束纤维混凝土的轴压应力-应变本构模型。研究结果表明:GFRP筋纤维混凝土柱和钢筋纤维混凝土柱破坏过程和破坏形态相似;提高GFRP纵筋配筋率能显著提高试件轴压承载力;减小箍筋间距或保持配箍率不变时减小箍筋直径能显著提高试件延性, 但对约束效率的提高作用较小。

参考文献/References:

[1] 林晖. 掺PVA纤维混凝土的力学及变形性能研究[D]. 南京:南京航空航天大学, 2006:6-12.LIN Hui. Research on the performance of mechanics and deformation of concrete with PVA fiber[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2006:6-12.
[2] 祁皑, 翁春光. FRP筋混凝土连续梁力学性能试验研究[J]. 土木工程学报, 2008, 41(5):1-7.QI Ai, WENG Chunguang. Experimental study on the mechanical behavior of continuous beams reinforced with FRP rebars[J]. China civil engineering journal, 2008, 41(5):1-7.
[3] 薛伟辰, 郑乔文, 杨雨. FRP筋混凝土梁正截面抗弯承载力设计研究[J]. 工程力学, 2009, 26(1):79-85.XUE Weichen, ZHENG Qiaowen, YANG Yu. Design recommendations on flexural capacity of FRP-reinforced concrete beams[J]. Engineering mechanics, 2009, 26(1):79-85.
[4] 王作虎, 杜修力, 詹界东. 有粘结和无粘结相结合的预应力FRP筋混凝土梁抗弯承载力研究[J]. 工程力学, 2012, 29(3):67-74.WANG Zuohu, DU Xiuli, ZHAN Jiedong. The flexural capacity of concrete beams prestressed with bonded and/or unbonded FRP tendons[J]. Engineering mechanics, 2012, 29(3):67-74.
[5] ZHANG Jiwen, GE Wenjie, DAI Hang, et al. Study on the flexural capacity of concrete beam hybrid reinforced with frp bars and steel bars[C]//Proceedings of the 5th International Conference on FRP Composites in Civil Engineering. Beijing, China, 2010:304-307.
[6] PANTELIDES C P, GIBBONS M E, REAVEELEY L D. Axial load behavior of concrete columns confined with GFRP spirals[J]. Journal of composites for construction, 2013, 17(3):305-313.
[7] DE L A, MATTA F, NANNI A. Behavior of full-scale glass fiber-reinforced polymer reinforced concrete columns under axial load[J]. ACI structural journal, 2010, 107(5):589-596.
[8] AFIFI M Z, MOHAMED H M, CHAALLAL O, et al. Confinement model for concrete columns internally confined with carbon FRP spirals and hoops[J]. Journal of structural engineering, 2015, 141(9):04014219.
[9] 中冶建筑研究总院有限公司. GB 50608-2010, 纤维增强复合材料建设工程应用技术规范[S]. 北京:中国计划出版社, 2011.Central Research Institute of Building and Construction Co., Ltd. GB 50608-2010, Technical code for infrastructure application of FRP composites[S]. Beijing:China Planning Press, 2011.
[10] 中国建筑科学研究院. GB/T 50081-2002, 普通混凝土力学性能试验方法标准[S]. 北京:中国建筑工业出版社, 2003.China Academy of Building Research. GB/T 50081-2002, Standard for test method of mechanical properties on ordinary concrete[S]. Beijing:China Architecture & Building Press, 2003.
[11] 中国建筑科学研究院. GB 50010-2010, 混凝土结构设计规范(2015年版)[S]. 北京:中国建筑工业出版社, 2011.China Academy of Building Research. GB 50010-2010, Code for design of concrete structures[S]. Beijing:China Architecture & Building Press, 2011
[12] PESSIKI S, PIERONI A. Axial load behavior of large-scale spirally-reinforced high-strength concrete columns[J]. ACI structural journal, 1997, 94(3):304-314.
[13] AFIFI M Z, MOHAMED H M, BENMOKRANE B. Axial capacity of circular concrete columns reinforced with GFRP bars and spirals[J]. Journal of composites for construction, 2014, 18(1):04013017. doi:10.1061/(ASCE)CC.1943-5614.0000438
[14] TOBBI H, FARGHALY A S, BENMOKRANE B. Behavior of concentrically loaded fiber-reinforced polymer reinforced concrete columns with varying reinforcement types and ratios[J]. ACI structural journal, 2014, 111(2):375-385.
[15] KOBAYASHI K, FUJISAKI T. Compressive behavior of FRP reinforcement in non-prestressed concrete members[C]//Proceedings of the 1995 2nd International RILEM Symposium. Ghent, Belgium, 1995:267-274.
[16] TOBBI H, FARGHALY A S, BENMOKRANE B. Strength model for concrete columns reinforced with fiber-reinforced polymer bars and ties[J]. ACI structural journal, 2014, 111(4):789-798.
[17] OTTOSEN N S. A failure criterion for concrete[J]. Journal of engineering mechanics, 1977, 103(4):527-535.
[18] 过镇海, 时旭东. 钢筋混凝土原理和分析[M]. 北京:清华大学出版社, 2003:103-114.GUO Zhenhai, SHI Xudong. Reinforced concrete theory and analyse[M]. Beijing:Tsinghua University Press, 2003:103-114.
[19] LAM L, TENG J G. Design-oriented stress-strain model for FRP-confined concrete[J]. Construction and building materials, 2003, 17(6/7):471-489.

备注/Memo

备注/Memo:
收稿日期:2017-04-27。
基金项目:国家自然科学基金项目(51578021).
作者简介:邓宗才(1961-),男,教授,博士生导师;张秀丽(1986-),女,讲师,博士研究生.
通讯作者:张秀丽,E-mail:zxlgmyy@126.com.
更新日期/Last Update: 2018-10-10