[1]张阿樱,吕海宝.FLUENT模拟分析巴基纸基复合材料的温度场分布[J].哈尔滨工程大学学报,2018,39(06):1098-1103.[doi:10.11990/jheu.201706025]
 ZHANG Aying,LYU Haibao.Temperature field distribution of buckypaper/polymer composites based on FLUENT simulation[J].hebgcdxxb,2018,39(06):1098-1103.[doi:10.11990/jheu.201706025]
点击复制

FLUENT模拟分析巴基纸基复合材料的温度场分布(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年06期
页码:
1098-1103
栏目:
出版日期:
2018-06-05

文章信息/Info

Title:
Temperature field distribution of buckypaper/polymer composites based on FLUENT simulation
作者:
张阿樱1 吕海宝2
1. 哈尔滨学院 图书馆, 黑龙江 哈尔滨 150086;
2. 哈尔滨工业大学 复合材料与结构研究所, 黑龙江 哈尔滨 150001
Author(s):
ZHANG Aying1 LYU Haibao2
1. Library, Harbin University, Harbin 150086, China;
2. Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
关键词:
巴基纸聚合物复合材料导热性能模拟温度场有限元FLUENT
分类号:
TB332
DOI:
10.11990/jheu.201706025
文献标志码:
A
摘要:
为了研究加热过程中加热功率及聚合物基体导热系数等因素对巴基纸基复合材料达到稳态所需时间及温度场分布的影响规律,采用有限元软件FLUENT分别模拟了不同工况条件下矩形弯曲、正弦形及平板形巴基纸增强聚合物基复合材料的热传导性能。计算结果表明:三种形状巴基纸基复合材料加热达到稳态后整体温度水平均随加热功率的增大呈线性增长,且巴基纸基复合材料达到稳态时所需时间也随加热功率的增大而延长。随着聚合物基体材料导热系数的增大,巴基纸基复合材料温度分布更加均匀,且巴基纸基复合材料达到稳态所需要的时间越短。分析认为,加热功率对巴基纸基复合材料温度分布规律的影响主要通过巴基纸加热片的单位体积热源起作用;聚合物基体导热系数增大利于巴基纸加热片热量的散出,因此缩短了巴基纸基复合材料达到稳态的所需时间。

参考文献/References:

[1] VALCÁRCEL M, CÁRDENAS S, SIMONET B M. Role of carbon nanotubes in analytical science[J]. Analytical chemistry, 2007, 79(13):4788-4797.
[2] BERBER S, KWON Y K, TOMANEK D. Unusually high thermal conductivity of carbon nanotubes[J]. Physical review letters, 2000, 84(20):4613-4616.
[3] POP E, MANN D, WANG Qian, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano letter, 2006, 6(1):96-100.
[4] HONE J, WHITNEY M, ZETTL A. Thermal conductivity of single-walled carbon nanotubes[J]. Physical review B:condensed matter, 1999, 59(4):R2514-R2516.
[5] 谢璠, 齐暑华, 李珺鹏, 等. 聚合物基导热复合材料的研究进展[J]. 中国胶粘剂, 2011, 20(9):59-64.XIE Fan, QI Shuhua, LI Junpeng, et al. Research progress of polymer-based composites with thermal conductivity[J]. China adhesives, 2011, 20(9):59-64.
[6] 闫盼盼, 熊伟, 张保丰, 等. CF/CNTs多尺度混杂填充PA6复合材料性能研究[J]. 塑料科技, 2018, 46(1):37-41.YAN Panpan, XIONG Wei, ZHANG Baofeng, et al. Study on properties of CF/CNTs multiscale hybrid filled PA6 composites[J]. Plastics science and technology, 2018, 46(1):37-41.
[7] 刘珍红, 孙晓刚, 陈珑, 等. 碳纳米管纸/纳米硅复合电极的锂离子电池性能[J]. 材料工程, 2018, 46(1):99-105.LIU Zhenhong, SUN Xiaogang, CHEN Long, et al. Performance of lithium ion batteries with carbon nanotube paper/Nano silicon composite electrode[J]. Journal of materials engineering, 2018, 46(1):99-105.
[8] 王俊, 朱振华, 张明华, 等. CB/MWCNTs/PP导电复合材料的制备与性能表征[J]. 塑料工业, 2017, 46(11):107-112.WANG Jun, ZHU Zhenhua, ZHANG Minghua, et al. Preparation and characterization of CB/MWCNTs/PP conductive composites[J]. China plastics industry, 2017, 46(11):107-112.
[9] CHANG C Y, PHILLIPS E M, LIANG R, et al. Alignment and properties of carbon nanotube buckypaper/liquid crystalline polymer composites[J]. Journal of applied polymer science, 2013, 128(3):1360-1368.
[10] ROMERO H E, BOLTON K, ROSÉN A, et al. Atom collision-induced resistivity of carbon nanotubes[J]. Science, 2005, 307(5706):89-93.
[11] WANG Chuan, ZHANG Jialu, RYU K, et al. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications[J]. Nano letter, 2009, 9(12):4285-4291.
[12] LAHIFF E, LEAHY R, COLEMAN J N, et al. Physical properties of novel free-standing polymer-nanotube thin films[J]. Carbon, 2006, 44(8):1525-1529.
[13] CHENG Qunfeng, BAO Jianwen, PARK J, et al. High mechanical performance composite conductor:multi-walled carbon nanotube sheet/bismaleimide nanocomposites[J]. Advanced functional materials, 2009, 19(20):3219-3225.
[14] LU Haibao, LIANG Fei, GOU Jihua, et al. Synergistic effect of self-assembled carbon nanopaper and multi-layered interface on shape memory nanocomposite for high speed electrical actuation[J]. Journal of applied physics, 2014, 115(6):064907.
[15] CHEN Hongyuan, CHEN Minghai, DI Jiangtao, et al. Architecting three-dimensional networks in carbon nanotube buckypapers for thermal interface materials[J]. The journal of physical chemistry C, 2012, 116(6):3903-3909.
[16] DÍEZ-PASCUAL A M, GUAN Jingwen, SIMARD B, et al. Poly(phenylene sulphide) and poly(ether ether ketone) composites reinforced with single-walled carbon nanotube buckypaper:Ⅱ-Mechanical properties, electrical and thermal conductivity[J]. Composites part A:applied science and manufacturing, 2012, 43(6):1007-1015.
[17] 吕海宝. 电驱动与溶液驱动形状记忆聚合物混合体系及其本构方程[D]. 哈尔滨:哈尔滨工业大学, 2010.LYU Haibao. Electro-and solution-active shape memory polymer blends and their thermodynamic constitutive equation[D]. Harbin:Harbin Institute of Technology, 2010.
[18] 刘金世, 薛庆忠. 碳纳米管复合材料的有效热导率[J]. 石油大学学报(自然科学版), 2004, 28(5):142-144.LIU Jinshi, XUE Qingzhong. Effective thermal conductivity of carbon nanotube composites[J]. Journal of the University of Petroleum, China(nature science), 2004, 28(5):142-144.
[19] YANG K, HE J, PUNEET P, et al. Tuning electrical and thermal connectivity in multiwalled carbon nanotubebuckypaper[J]. Journal of Physics Condensed Matter an institute of physics, 2010, 22(33):334215-334220.
[20] MEMON M O, HAILLOT S, LAFDI K. Carbon nanofiber based buckypaper used as a thermal interface material[J]. Carbon, 2011, 49(12):3820-3828.

相似文献/References:

[1]张阿樱,吕海宝.巴基纸基复合材料导热性能模拟[J].哈尔滨工程大学学报,2017,38(11):1812.[doi:10.11990/jheu.201610001]
 ZHANG Aying,LYU Haibao.Simulation analysis on thermal conductivity of composites reinforced by buckypaper[J].hebgcdxxb,2017,38(06):1812.[doi:10.11990/jheu.201610001]

备注/Memo

备注/Memo:
收稿日期:2017-06-08。
基金项目:黑龙江省博士后科研启动金项目(LBH-Q16141);黑龙江省自然科学基金项目(E201454).
作者简介:张阿樱(1973-),女,高级工程师,博士后;吕海宝(1979-),男,教授.
通讯作者:张阿樱,E-mail:zaying@sina.com
更新日期/Last Update: 2018-06-01