[1]陈翔,张友林,万德成.MPS方法研究进展及其在船舶水动力学问题中的应用[J].哈尔滨工程大学学报,2018,39(06):955-972.[doi:10.11990/jheu.201710026]
 CHEN Xiang,ZHANG Youlin,WAN Decheng.Developments of the MPS method and its applications on hydrodynamics problems[J].hebgcdxxb,2018,39(06):955-972.[doi:10.11990/jheu.201710026]
点击复制

MPS方法研究进展及其在船舶水动力学问题中的应用(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年06期
页码:
955-972
栏目:
出版日期:
2018-06-05

文章信息/Info

Title:
Developments of the MPS method and its applications on hydrodynamics problems
作者:
陈翔13 张友林13 万德成13
1. 上海交通大学 船舶海洋与建筑工程学院, 上海 200240;
2. 上海交通大学 海洋工程国家重点实验室, 上海 200240;
3. 上海交通大学 高新船舶与深海开发装备协同创新中心, 上海 200240
Author(s):
CHEN Xiang13 ZHANG Youlin13 WAN Decheng13
1. School of Naval Architecture Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
2. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
3. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
无网格粒子法移动粒子半隐式方法并行加速技术重叠粒子技术多分辨率粒子技术多相流流固耦合
分类号:
O35;U663
DOI:
10.11990/jheu.201710026
文献标志码:
A
摘要:
移动粒子半隐式方法(moving particle semi-implicit, MPS)是基于Lagrangian观点来描述流体的运动,具有能够灵活处理自由面的大幅度变形及物体的运动变形等优点,近年来受到越来越多研究人员的关注。本文对MPS方法的研究进展及其在船舶与海洋工程水动力学问题中的应用现状进行介绍。从计算精度方面,介绍了研究人员为提高压力场的光滑性及稳定性,对粒子间相互作用模型做出的多种改进。从计算效率方面,介绍了提高MPS方法计算速度的主要技术手段,同时从扩展MPS方法在实际水动力学问题中应用范围的角度,介绍了研究人员在数值边界条件和多相流方面做出的贡献。本文回顾了MPS方法在船舶与海洋工程典型水动力学问题中的应用成果,对该方法在数值格式改进、与其他方法耦合及三维复杂实际工程应用方面的发展空间进行了展望。

参考文献/References:

[1] KOSHIZUKA S, OKA Y. Moving-particle semi-implicit method for fragmentation of incompressible fluid[J]. Nuclear science and engineering, 1996, 123(3):421-434.
[2] ZHANG Yuxin, WAN Decheng, HINO T. Comparative study of MPS method and level-set method for sloshing flows[J]. Journal of hydrodynamics, Ser. B, 2014, 26(4):577-585.
[3] ATAIE-ASHTIANI B, FARHADI L. A stable moving-particle semi-implicit method for free surface flows[J]. Fluid dynamics research, 2006, 38(4):241-256.
[4] BELYTSCHKO T, KRONGAUZ Y, ORGAN D, et al. Meshless methods:an overview and recent developments[J]. Computer methods in applied mechanics and engineering, 1996, 139(1/2/3/4):3-47.
[5] SHAO Songdong, LO E Y M. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface[J]. Advances in water resources, 2003, 26(7):787-800.
[6] KOSHIZUKA S, NOBE A, OKA Y. Numerical analysis of breaking waves using the moving particle semi-implicit method[J]. International journal for numerical methods in fluids, 1998, 26(7):751-769.
[7] KHAYYER A, GOTOH H. Development of CMPS method for accurate water-surface tracking in breaking waves[J]. Coastal engineering journal, 2008, 50(2):179-207.
[8] TANAKA M, MASUNAGA T. Stabilization and smoothing of pressure in MPS method by quasi-compressibility[J]. Journal of computational physics, 2010, 229(11):4279-4290.
[9] TSURUTA N, KHAYYER A, GOTOH H. A short note on dynamic stabilization of moving particle semi-implicit method[J]. Computers & fluids, 2013, 82:158-164.
[10] ZHANG Shuai, MORITA K, FUKUDA K, et al. An improved MPS method for numerical simulations of convective heat transfer problems[J]. International journal for numerical methods in fluids, 2006, 51(1):31-47.
[11] KHAYYER A, GOTOH H. A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method[J]. Applied ocean research, 2010, 32(1):124-131.
[12] KHAYYER A, GOTOH H. A 3D higher order Laplacian model for enhancement and stabilization of pressure calculation in 3D MPS-based simulations[J]. Applied ocean research, 2012, 37:120-126.
[13] IKARI H, KHAYYER A, GOTOH H. Corrected higher order Laplacian for enhancement of pressure calculation by projection-based particle methods with applications in ocean engineering[J]. Journal of ocean engineering and marine energy, 2015, 1(4):361-376.
[14] KHAYYER A, GOTOH H. Modified moving particle semi-implicit methods for the prediction of 2D wave impact pressure[J]. Coastal engineering, 2009, 56(4):419-440.
[15] LEE B H, PARK J C, KIM M H, et al. Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads[J]. Computer methods in applied mechanics and engineering, 2011, 200(9/10/11/12):1113-1125.
[16] KONDO M, KOSHIZUKA S. Improvement of stability in moving particle semi-implicit method[J]. International journal for numerical methods in fluids, 2011, 65(6):638-654.
[17] GOTOH H, KHAYYER A, IKARI H, et al. Refined reproduction of a plunging breaking wave and resultant splash-up by 3D-CMPS method[C]//Proceedings of the Nineteenth International Offshore and Polar Engineering Conference. Osaka, Japan, 2009:518-524.
[18] IRIBE T, FUJISAWA T, KOSHIZUKA S. Reduction of communication in parallel computing of particle method for flow simulation of seaside areas[J]. Coastal engineering journal, 2010, 52(4):287-304.
[19] IKARI H, GOTOH H. Parallelization of MPS method for 3D wave analysis[C]//Proceedings of the 8th International Conference on Hydro-science and Engineering (ICHE). Nagoya, Japan, 2008.
[20] 张雨新. 改进的MPS方法及其三维并行计算研究[D]. 上海:上海交通大学, 2014.ZHANG Yuxin. Improved MPS method and its 3D parallel computation[D]. Shanghai:Shanghai Jiao Tong University, 2014.
[21] HORI C, GOTOH H, IKARI H, et al. GPU-acceleration for moving particle semi-implicit method[J]. Computers & fluids, 2011, 51(1):174-183.
[22] 朱小松. 粒子法的并行加速及在液体晃荡研究中的应用[D]. 大连:大连理工大学, 2011.ZHU Xiaosong. Parallel acceleration of particle method and its application on the study of liquid sloshing[D]. Dalian:Dalian University of Technology, 2011.
[23] 李海州. 三维MPS法的GPU并行加速研究[D]. 上海:上海交通大学, 2016.LI Haizhou. A study of parallel acceleration of GPU in 3-D MPS method[D]. Shanghai:Shanghai Jiao Tong University, 2016.
[24] OVAYSI S, PIRI M. Multi-GPU acceleration of direct pore-scale modeling of fluid flow in natural porous media[J]. Computer physics communications, 2012, 183(9):1890-1898.
[25] TANAKA M, CARDOSO R, BAHAI H. Multi-resolution MPS method[J]. Journal of computational physics, 2018, 359:106-136.
[26] TANG Zhenyuan, ZHANG Youlin, WAN Decheng. Multi-resolution MPS method for free surface flows[J]. International journal of computational methods, 2016, 13(4):1641018.
[27] TANG Zhenyuan, WAN Decheng, CHEN Gang, et al. Numerical simulation of 3D violent free-surface flows by multi-resolution MPS method[J]. Journal of ocean engineering and marine energy, 2016, 2(3):355-364.
[28] YOON H Y, KOSHIZUKA S, OKA Y. Mesh-free numerical method for direct simulation of gas-liquid phase interface[J]. Nuclear science and engineering, 1999, 133(2):192-200.
[29] YOON H Y, KOSHIZUKA S, OKA Y. A particle-gridless hybrid method for incompressible flows[J]. International journal for numerical methods in fluids, 1999, 30(4):407-424.
[30] YOON H Y, KOSHIZUKA S, OKA Y. Direct calculation of bubble growth, departure, and rise in nucleate pool boiling[J]. International journal of multiphase flow, 2001, 27(2):277-298.
[31] HEO S, KOSHIZUKA S, OKA Y. Numerical analysis of boiling on high heat-flux and high subcooling condition using MPS-MAFL[J]. International journal of heat and mass transfer, 2002, 45(13):2633-2642.
[32] TIAN Wenxi, ISHIWATARI Y, IKEJIRI S, et al. Numerical simulation on void bubble dynamics using moving particle semi-implicit method[J]. Nuclear engineering and design, 2009, 239(11):2382-2390.
[33] CHEN Ronghua, TIAN Wenxi, SU Guanghui, et al. Numerical investigation on bubble dynamics during flow boiling using moving particle semi-implicit method[J]. Nuclear engineering and design, 2010, 240(11):3830-3840.
[34] 陈荣华, 田文喜, 苏光辉, 等. 流动泡核沸腾中汽泡行为的MPS数值模拟[J]. 原子能科学技术, 2011, 45(9):1051-1055.CHEN Ronghua, TIAN Wenxi, SU Guanghui, et al. Numerical simulation on bubble growth and departure by MPS[J]. Atomic energy science and technology, 2011, 45(9):1051-1055.
[35] 陈荣华, 田文喜, 左娟莉, 等. 基于MPS方法的汽泡冷凝与融合特性研究[J]. 工程热物理学报, 2011, 32(11):1876-1880.CHEN Ronghua, TIAN Wenxi, ZUO Juanli, et al. Numerical investigation on bubble condensation and coalescence of bubble pairs using moving particle semi-implicit method[J]. Journal of engineering thermophysics, 2011, 32(11):1876-1880.
[36] 陈荣华, 田文喜, 左娟莉, 等. 基于MPS方法的液态铅铋合金内气泡上升流数值模拟[J]. 核动力工程, 2011, 32(5):96-99.CHEN Ronghua, TIAN Wenxi, ZUO Juanli, et al. Numerical analysis of bubble rising behavior in a liquid metal using MPS[J]. Nuclear power engineering, 2011, 32(5):96-99.
[37] 左娟莉, 田文喜, 秋穗正, 等. 液态金属内单个气泡上升行为的MPS法数值模拟[J]. 原子能科学技术, 2011, 45(12):1449-1455.ZUO Juanli, TIAN Wenxi, QIU Suizheng, et al. Numerical simulation on single bubble rising behavior in liquid metal using moving particle semi-implicit method[J]. Atomic energy science and technology, 2011, 45(12):1449-1455.
[38] SHIBATA K, KOSHIZUKA S, SAKAI M, et al. Lagrangian simulations of ship-wave interactions in rough seas[J]. Ocean engineering, 2012, 42:13-25.
[39] SHIBATA K, KOSHIZUKA S, TAMAI T. Overlapping particle technique and application to green water on deck[C]//Proceedings of the 2nd International Conference on Violent Flows. Nantes, France, 2012:106-111.
[40] TANG Zhenyuan, ZHANG Yuxing, LI Haizhou, et al. Overlapping MPS method for 2D free surface flows[C]//Proceedings of the Twenty-Fourth International Ocean and Polar Engineering Conference. Busan, Korea, 2014:411-419.
[41] TANG Zhenyuan, ZHANG Youlin, WAN Decheng. Numerical simulation of 3-D free surface flows by overlapping MPS[J]. Journal of hydrodynamics, Ser. B, 2016, 28(2):306-312.
[42] MA Q W, ZHOU J T. MLPG_R method for numerical simulation of 2D breaking waves[J]. Computer modeling in engineering & sciences, 2009, 43(3):277-303.
[43] PARK J I, PARK J C, HWANG S C, et al. Two-dimensional particle simulation for behaviors of floating body near quaywall during tsunami[J]. Journal of ocean engineering and technology, 2014, 28(1):12-19.
[44] ZHANG Y X, WAN D C. Apply MPS method to simulate liquid sloshing in LNG tank[J]. Phytotherapy research, 2012, 29(12):843-1857.
[45] MONAGHAN J J, KAJTAR J B. SPH particle boundary forces for arbitrary boundaries[J]. Computer physics communications, 2009, 180(10):1811-1820.
[46] KULASEGARAM S, BONET J, LEWIS R W, et al. A variational formulation based contact algorithm for rigid boundaries in two-dimensional SPH applications[J]. Computational mechanics, 2004, 33(4):316-325.
[47] FERRAND M, LAURENCE D R, ROGERS B D, et al. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method[J]. International journal for numerical methods in fluids, 2013, 71(4):446-472.
[48] LEROY A, VIOLEAU D, FERRAND M, et al. Unified semi-analytical wall boundary conditions applied to 2-D incompressible SPH[J]. Journal of computational physics, 2014, 261:106-129.
[49] LASTIWKA M, BASA M, QUINLAN N J. Permeable and non-reflecting boundary conditions in SPH[J]. International journal for numerical methods in fluids, 2010, 61(7):709-724.
[50] HOSSEINI S M, FENG J J. Pressure boundary conditions for computing incompressible flows with SPH[J]. Journal of computational physics, 2011, 230(19):7473-7487.
[51] LEROY A, VIOLEAU D, FERRAND M, et al. A new open boundary formulation for incompressible SPH[J]. Computers & mathematics with applications, 2016, 72(9):2417-2432.
[52] SHIBATA K, KOSHIZUKA S, SAKAI M, et al. Transparent boundary condition for simulating nonlinear water waves by a particle method[J]. Ocean engineering, 2011, 38(16):1839-1848.
[53] GOTOH H, FREDS?E J. Lagrangian two-phase flow model of the settling behavior of fine sediment dumped into water[C]//Proceedings of the 27th International Conference on Coastal Engineering. Sydney, Australia, 2000:3906-3919.
[54] LIU J, KOSHIZUKA S, OKA Y. A hybrid particle-mesh method for viscous, incompressible, multiphase flows[J]. Journal of computational physics, 2005, 202(1), 65-93.
[55] SHAKIBAEINIA A, JIN Y C. A mesh-free particle model for simulation of mobile-bed dam break[J]. Advances in water resources, 2011, 34(6):794-807.
[56] SHAKIBAEINIA A, JIN Y C. MPS mesh-free particle method for multiphase flows[J]. Computer methods in applied mechanics and engineering, 2012, 229-232:13-26.
[57] KHAYYER A, GOTOH H. Enhancement of performance and stability of MPS mesh-free particle method for multiphase flows characterized by high density ratios[J]. Journal of computational physics, 2013, 242:211-233.
[58] 潘徐杰, 张怀新. 用移动粒子半隐式法模拟液舱横摇晃荡现象[J]. 上海交通大学学报, 2008, 42(11):1904-1907.PAN Xujie, ZHANG Huaixin. Moving-particle semi-implicit method for simulation of liquid sloshing on roll motion[J]. Journal of Shanghai Jiao Tong University, 2008, 42(11):1904-1907.
[59] 潘徐杰, 张怀新. 移动粒子半隐式法晃荡模拟中的压力震荡现象研究[J]. 水动力学研究与进展, 2008, 23(4):453-463.PAN Xujie, ZHANG Huaixin. A study on the oscillations appearing in pressure calculation for sloshing simulation by using moving-particle semi-implicit method[J]. Chinese journal of hydrodynamics, 2008, 23(4):453-463.
[60] HWAN S C, LEE B H, PARK J C. Numerical simulation of violent sloshing motion in rectangular tank using improved MPS method[C]//Proceedings of the Ninth ISOPE Pacific/Asia Offshore Mechanics Symposium. Busan, Korea, 2010:10-14.
[61] 张雨新, 万德成. 用MPS方法数值模拟低充水液舱的晃荡[J]. 水动力学研究与进展, 2012, 27(1):100-107.ZHANG Yuxin, WAN Decheng. Numerical simulation of liquid sloshing in low-filling tank by MPS[J]. Chinese journal of hydrodynamics, 2012, 27(1):100-107.
[62] 张雨新, 万德成, 日野孝则. 基于MPS方法数值模拟三维液舱晃荡[C]//第十一届全国水动力学学术会议暨第二十四届全国水动力学研讨会并周培源诞辰110周年纪念大会文集. 无锡, 中国, 2012:310-318.ZHANG Yuxin, WAN Decheng, HINO Takanori. 3D simulation of liquid sloshing based on MPS method[C]//Proceedings of the 11th National Congress on Hydrodynamics & 24th National Conference on Hydrodynamics and Commemoration of the 110th Anniversary of Zhou Pei-yuan’s Birth. Wuxi, China, 2012:310-318.
[63] 张雨新, 万德成. MPS方法在二维液舱晃荡中的应用[J]. 复旦学报(自然科学版), 2013, 52(5):618-626, 634.ZHANG Yuxin, WAN Decheng. Application of MPS method for 2D liquid sloshing[J]. Journal of Fudan university (nature science), 2013, 52(5):618-626, 634.
[64] 张雨新, 万德成, 日野孝则. MPS方法数值模拟液舱晃荡问题[J]. 海洋工程, 2014, 32(4):24-32.ZHANG Yuxin, WAN Decheng, HINO Takanori. Application of MPS method in liquid sloshing[J]. The ocean engineering, 2014, 32(4):24-32.
[65] ZHANG Yuxin, YANG Yaqiang, TANG Zhenyuan, et al. Parallel MPS method for three-dimensional liquid sloshing[C]//Proceedings of the Twenty-fourth International Ocean and Polar Engineering Conference. Busan, Korea, 2014:257-264.
[66] TSUKAMOTO M M, CHENG L Y, NISHIMOTO K. Analytical and numerical study of the effects of an elastically-linked body on sloshing[J]. Computers & fluids, 2011, 49(1):1-21.
[67] YANG Yaqiang, TANG Zhenyuan, WAN Decheng. Numerical simulations of 3D liquid sloshing flows by MPS method[C]//Proceedings of the Eleventh ISOPE Pacific/Asia Offshore Mechanics Symposium. Shanghai, China, 2014:192-197.
[68] YANG Yaqiang, TANG Zhenyuan, ZHANG Youlin, et al. Investigation of excitation period effects on 2D liquid sloshing by MPS method[C]//Proceedings of the Twenty-Fifth International Ocean and Polar Engineering Conference. Kona, Hawaii, USA, 2015:891-897.
[69] YANG Yaqiang, TANG Zhenyuan, WAN Decheng. Numerical simulation of 3D sloshing flows in a rectangular tank by MPS method[C]//Proceedings of the 9th International Workshop on Ship and Marine Hydrodynamics. Glasgow, UK, 2015.
[70] 杨亚强, 唐振远, 万德成. 基于MPS方法模拟带水平隔板的液舱晃荡[J]. 水动力学研究与进展A辑, 2015, 30(2):146-153.YANG Yaqiang, TANG Zhenyuan, WAN Decheng. Numerical study on liquid sloshing in horizontal baffled tank by MPS method[J]. Chinese journal of hydrodynamics, 2015, 30(2):146-153.
[71] 杨亚强, 唐振远, 万德成. 基于MPS方法模拟薄膜型液舱晃荡问题[C]//第二十七届全国水动力学研讨会文集. 南京, 中国, 2015:318-324.YANG Yaqiang, TANG Zhenyuan, WAN Decheng. Numerical study on liquid sloshing in membrane tank by MPS method[C]//Proceedings of the 27th National Conference on Hydrodynamics. Nanjing, China, 2015:318-324.
[72] 肖武, 杨亚强, 万德成. 基于MPS方法数值模拟三维LNG液舱的晃荡问题[J]. 水动力学研究与进展A辑, 2016, 31(6):697-705.XIAO Wu, YANG Yaqiang, WAN Decheng. Numerical study on liquid sloshing in 3D LNG tank by MPS method[J]. Chinese journal of hydrodynamics, 2016, 31(6):697-705.
[73] BULIAN G, SOUTO-IGLESIAS A, DELORME L, et al. Smoothed particle hydrodynamics (SPH) simulation of a tuned liquid damper[J]. Journal of hydraulic research, 2010, 48(S1):28-39.
[74] 杨亚强. 基于MPS方法的液舱晃荡数值模拟与分析[D]. 上海:上海交通大学, 2016.YANG Yaqiang. Numerical investigation of liquid sloshing by MPS method[D]. Shanghai:Shanghai Jiao Tong University, 2016.
[75] CHEN Xiang, TANG Zhenyuan, WAN Decheng. The effects of T type baffle on liquid sloshing by MPS method[C]//Proceedings of 3rd International Conference on Violent Flows (VF-2016). Osaka, Japan, 2016:25.
[76] CHEN Xiang, WAN Decheng, HUANG Wenhua. Numerical simulation of effects of two different baffles on liquid sloshing by MPS method[C]//Proceedings of the Twenty-sixth International Ocean and Polar Engineering Conference. Rhodes, Greece, 2016:931-938.
[77] CHEN X, ZHANG Y L, WAN D C. Effects of the location of horizontal baffle on liquid sloshing by MPS method[C]//Proceedings of the Second Conference of Global Chinese Scholars on Hydrodynamics. Wuxi, China, 2016:448-454.
[78] RUEDA G E, TSUKAMOTO M M, MEDEIROS H F, et al. Validation study of MPS (Moving Particle Semi-Implicit Method) for sloshing and damage stability analysis[C]//Proceedings of the 27th International Conference on Offshore Mechanics and Arctic Engineering. Estoril, Portugal, 2008:483-489.
[79] LEE B H, PARK J C, KIM M H. Two-dimensional vessel-motion/liquid-sloshing interactions and impact loads by using a particle method[C]//Proceedings of the 29th International Conference on Ocean, Offshore and Arctic Engineering. Shanghai, China, 2010:679-686.
[80] KIM K S, KIM M H, PARK J C. Development of Moving Particle Simulation method for multiliquid-layer sloshing[J]. Mathematical problems in engineering, 2014, 2014:350165.
[81] HASHIMOTO H, HATA Y, KAWAMURA K. Estimation of oil overflow due to sloshing from oil storage tanks subjected to a possible Nankai trough earthquake in Osaka bay area[J]. Journal of loss prevention in the process industries, 2017, 50:337-346.
[82] KAWAMURA K, HASHIMOTO H, ONODERA N, et al. GPGPU simulation of oil tank sloshing based on explicit MPS method[C]//Proceedings of 3rd International Conference on Violent Flows (VF-2016). Osaka, Japan, 2016.
[83] KHAYYER A, GOTOH H, SHAO Songdong. Enhanced predictions of wave impact pressure by improved incompressible SPH methods[J]. Applied ocean research, 2009, 31(2):111-131.
[84] SHIBATA K, MASAIE I, KONDO M, et al. Improved pressure calculation for the moving particle semi-implicit method[J]. Computational particle mechanics, 2015, 2(1):91-108.
[85] SUEYOSHI M, KIHARA H, KASHIWAGI M. A hybrid technique using particle and boundary-element methods for wave-body interaction problems[C]//Proceedings of the 9th International Conference on Numerical Ship Hydrodynamics. Michigan, USA, 2007:241-252.
[86] AKBARI H. Modified moving particle method for modeling wave interaction with multi layered porous structures[J]. Coastal engineering, 2014, 89:1-19.
[87] ZHANG Yuxin, WANG Xuyang, TANG Zhenyuan, et al. Numerical simulation of green water incidents based on parallel MPS method[C]//Proceedings of the Twenty-third International Offshore and Polar Engineering Conference. Anchorage, Alaska, 2013:931-938.
[88] RAO Chengping, ZHANG Youlin, WAN Decheng. FSI analysis of solitary wave interacting with horizontal flexible plate by MPS-FEM method[C]//Proceedings of the Twenty-Seventh International Ocean and Polar Engineering Conference. San Francisco, California, USA, 2017.
[89] SUEYOSHI M, KASHIWAGI M, NAITO S. Numerical simulation of wave-induced nonlinear motions of a two-dimensional floating body by the moving particle semi-implicit method[J]. Journal of marine science and technology, 2008, 13(2):85-94.
[90] ZHANG Youlin, WAN Decheng. Numerical study of interactions between waves and free rolling body by IMPS method[J]. Computers & fluids, 2017, 155:124-133.
[91] LEE B H, PARK J C, KIM M H, et al. Numerical simulation of impact loads using a particle method[J]. Ocean engineering, 2010, 37(2/3):164-173.
[92] SHIBATA K, KOSHIZUKA S, SAKAI M, et al. Numerical analysis of acceleration of a free-fall lifeboat using the MPS method[J]. International journal of offshore and polar engineering, 2010, 23(4):279-285.
[93] YOKOYAMA M, KUBOTA Y, KIKUCHI K, et al. Some remarks on surface conditions of solid body plunging into water with particle method[J]. Advanced modeling and simulation in engineering sciences, 2014, 1:9.
[94] SUN Zhe, XING J T, DJIDJELI K, et al. Coupling MPS and modal superposition method for flexible wedge dropping simulation[C]//Proceedings of the 25th International Ocean and Polar Engineering Conference. Hawaii, USA, 2015:144-151.
[95] 余谦, 张怀新. 改进的移动粒子半隐式法模拟楔形体入水砰击[J]. 海洋工程, 2013, 31(6):9-15, 90.YU Qian, ZHANG Huaixin. Research on water entry of wedge based on the improved MPS method with large eddy simulation[J]. The ocean engineering, 2013, 31(6):9-15, 90.
[96] KHAYYER A, GOTOH H. A multi-phase compressible-incompressible particle method for water slamming[C]//Proceedings of the Twenty-Fifth International Ocean and Polar Engineering Conference. Hawaii, USA, 2015.
[97] ZHANG Youlin, TANG Zhenyuan, WAN Decheng. Simulation of water entry of a free-falling wedge by improved MPS method[C]//Proceedings of the Twenty-sixth International Ocean and Polar Engineering Conference. Rhodes, Greece, 2016:220-227.
[98] TANG Zhenyuan, WANG Jianhua, ZHANG Youlin, et al. Numerical investigation of 3D water entry based on IMPS method and overset method[C]//Proceedings of 3rd International Conference on Violent Flows. Osaka, Japan, 2016.
[99] LIU Xiaodong, SAKAI S. Time domain analysis on the dynamic response of a flexible floating structure to waves[J]. Journal of engineering mechanics, 2002, 128(1):48-56.
[100] LIAO Kangping, HU Changhong. A coupled FDM-FEM method for free surface flow interaction with thin elastic plate[J]. Journal of marine science and technology, 2013, 18(1):1-11.
[101] LEE C J K, NOGUCHI H, KOSHIZUKA S. Fluid-shell structure interaction analysis by coupled particle and finite element method[J]. Computers & structures, 2007, 85(11/12/13/14):688-697.
[102] HWANG S C, PARK J C, GOTOH H, et al. Numerical simulations of sloshing flows with elastic baffles by using a particle-based fluid-structure interaction analysis method[J]. Ocean engineering, 2016, 118:227-241.
[103] KHAYYER A, GOTOH H, FALAHATY H, et al. Towards development of enhanced fully-Lagrangian mesh-free computational methods for fluid-structure interaction[J]. Journal of hydrodynamics, 2018, 30(1):49-61.
[104] ZHANG Youlin, WAN Decheng. MPS-FEM coupled method for sloshing flows in an elastic tank[J]. Ocean engineering, 2018, 152:416-427.
[105] ZHANG Youlin, CHEN Xiang, WAN Decheng, et al. Sloshing flows in an elastic tank with high filling liquid by MPS-FEM coupled method[C]//Proceedings of the Twenty-seventh International Ocean and Polar Engineering Conference. San Francisco, California, USA, 2017.
[106] ZHANG Youlin, CHEN Xiang, WAN Decheng. An MPS-FEM coupled method for the comparative study of liquid sloshing flows interacting with rigid and elastic baffles[J]. Applied mathematics and mechanics, 2016, 37(12):1359-1377.
[107] RAO Chengping, ZHANG Youlin, WAN Decheng. Numerical simulation of the solitary wave interacting with an elastic structure using MPS-FEM coupled method[J]. Journal of marine science and application, 2017, 16(4):395-404.
[108] RAO Chengping, WAN Decheng. Numerical study of the wave-induced slamming force on the elastic plate based on MPS-FEM coupled method[J]. Journal of hydrodynamics, 2018, 30(1):70-78.
[109] ANTOCI C, GALLATI M, SIBILLA S. Numerical simulation of fluid-structure interaction by SPH[J]. Computers & structures, 2007, 85(11/12/13/14):879-890.
[110] ERKAN N, KAWAKAMI T, MADOKORO H, et al. Numerical simulation of droplet deposition onto a liquid film by VOF-MPS hybrid method[J]. Journal of visualization, 2015, 18(2):381-391.

相似文献/References:

[1]王立权,宫含洋,邢晓冬,等.海底犁式挖沟机犁体动力学数值仿真分析[J].哈尔滨工程大学学报,2013,(01):58.[doi:10.3969/j.issn.1006-7043. 201205079]
 WANG Liquan,GONG Hanyang,XING Xiaodong,et al.Dynamic numerical simulation of submarine plow body[J].hebgcdxxb,2013,(06):58.[doi:10.3969/j.issn.1006-7043. 201205079]

备注/Memo

备注/Memo:
收稿日期:2017-10-19。
基金项目:国家自然科学基金项目(51490675,11432009,51579145);长江学者奖励计划(T2014099);上海高校东方学者特聘教授岗位跟踪计划(2013022);上海市优秀学术带头人计划(17XD1402300);上海市船舶工程重点实验室基金项目(K2015-11);工信部数值水池创新专项VIV/VIM项目(2016-23/09).
作者简介:陈翔(1990-),男,博士研究生;万德成(1967-),男,教授,博士生导师,长江学者特聘教授.
通讯作者:万德成,E-mail:dcwan@sjtu.edu.cn
更新日期/Last Update: 2018-06-01