[1]万云,杨海龙,周双喜,等.缺陷对纤维金属层板低速冲击性能影响规律[J].哈尔滨工程大学学报,2020,41(7):1022-1028.[doi:10.11990/jheu.201901033]
 WAN Yun,YANG Hailong,ZHOU Shuangxi,et al.Influence of flaw on the low-velocity impact resistance performance of glass fiber reinforced aluminum laminates (GLARE)[J].hebgcdxxb,2020,41(7):1022-1028.[doi:10.11990/jheu.201901033]
点击复制

缺陷对纤维金属层板低速冲击性能影响规律(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年7期
页码:
1022-1028
栏目:
出版日期:
2020-07-05

文章信息/Info

Title:
Influence of flaw on the low-velocity impact resistance performance of glass fiber reinforced aluminum laminates (GLARE)
作者:
万云12 杨海龙1 周双喜1 郑智秋1 陈莘莘1 罗文俊1 黄永虎1
1. 华东交通大学 土木建筑学院, 江西 南昌 330013;
2. 华东交通大学 土木工程国家实验教学示范中心, 江西 南昌 330013
Author(s):
WAN Yun12 YANG Hailong1 ZHOU Shuangxi1 ZHENG Zhiqiu1 CHEN Shenshen1 LUO Wenjun1 HUANG Yonghu1
1. School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China;
2. National Experimental Teaching Demonstration Center of Civil Engineering, East China Jiaotong University, Nanchang 330013, China
关键词:
低速冲击玻纤铝合金层板圆孔缺陷抗冲击性能有限元模拟损伤评估损伤机理内聚力模型
分类号:
TB331
DOI:
10.11990/jheu.201901033
文献标志码:
A
摘要:
为研究不同孔洞大小和位置的玻璃纤维铝合金层板抗冲击性能损伤规律,本文通过在Abaqus中建立落锤低速冲击有限元模型,分析了玻璃纤维铝合金层板受冲击后的接触力、能量吸收、试件变形的响应规律。该模型中用自定义子程序VUMAT、Johnson-Cook金属损伤模型以及基于接触行为的表面内聚力行为分别可以用于分析复合材料、铝合金层和层间分层行为。在20 J冲击能量下,对比分析了圆孔大小和圆孔位置对玻璃纤维铝合金层板材料的冲击响应和破坏规律。结果表明:固定半径2 mm,圆孔距离玻璃纤维铝合金层板中心处较近的试件铝合金层板损伤、层间损伤、复合材料板损伤范围大,且集中于圆孔内侧;固定圆孔距离冲击中心为6 mm,随孔径增大,试件的各类损伤集中于缺陷周围。因此,缺陷会明显降低玻璃纤维铝合金层板的抗冲击性能。

参考文献/References:

[1] VLOT A. Impact properties of fibre metal laminates[J]. Composites engineering, 1993, 3(10):911-927.
[2] 陈水生, 付仂, 桂水荣. 富山赣江特大桥车桥耦合振动响应及冲击系数研究[J]. 华东交通大学学报, 2018, 35(5):27-34.CHEN Shuisheng, FU Le, GUI Shuirong. Study on vehicle-bridge coupled vibration response and impact coefficient for the Ganjiang Bridge in Fushan[J]. Journal of East China JiaoTong University, 2018, 35(5):27-34.
[3] 陈勇, 庞宝君, 郑伟, 等. 纤维金属层板低速冲击试验和数值仿真[J]. 复合材料学报, 2014, 31(3):733-740.CHEN Yong, PANG Baojun, ZHENG Wei, et al. Tests and numerical simulation on low velocity impact performance of fiber metal laminates[J]. Acta materiae compositae sinica, 2014, 31(3):733-740.
[4] ALDERIESTEN R. Fatigue in fibre metal laminates:the interplay between fatigue in metals and fatigue in composites[J]. Fatigue & fracture of engineering materials & structures, 2019, 42(11):2414-2421.
[5] 拓宏亮, 马晓平, 卢智先. 含中心圆孔复合材料层合板失效分析及强度预测研究[J]. 航空工程进展, 2018, 9(2):259-266.TUO Hongliang, MA Xiaoping, LU Zhixian. Study on the analysis of failure mechanism and strength prediction of composite laminates with a central hole[J]. Advances in aeronautical science and engineering, 2018, 9(2):259-266.
[6] 李晓峰, 曲贵民, 李博儒. 圆孔对GLARE层合板抗冲击性能的影响[J]. 复合材料学报, 2016, 33(9):2104-2114.LI Xiaofeng, QU Guimin, LI Boru. Effect of circular hole on impact resistance of GLARE laminates[J]. Acta materiae compositae sinica, 2016, 33(9):2104-2114.
[7] SEYED YAGHOUBI A, LIU Y, LIAW B. Low-velocity impact on Glare 5 fiber-metal laminates:influences of specimen thickness and impactor mass[J]. Journal of aerospace engineering, 2012, 25(3):409-420.
[8] JOHNSON G R, COOK W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures[C]//Proceedings of the Seventh International Symposium on Ballistics. Hague, Netherland, 1983:541-547.
[9] KAY G. Failure modeling of titanium-61-4V and 2024-T3 aluminum with the Johnson-cook material model. UCRL-ID-149880[R]. Washington:U.S. Department of Energy, 2002:1-25.
[10] LESUER D. Experimental investigations of material models for Ti-6Al-4V and 2024-T3. UCRL-ID-134691[R]. Washingtion, D.C:U.S. Department of Energy, 1999.
[11] HASHIN Z. Failure criteria for unidirectional fiber composites[J]. Journal of applied mechanics, 1980, 47(2):329-334.
[12] TAN S C. A progressive failure model for composite laminates containing opening[J]. Journal of composite materials, 1991, 25(5):556-577.
[13] BARENBLATT G I. The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks[J]. Journal of applied mathematics and mechanics, 1959, 23(3):622-636.
[14] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the mechanics and physics of solids, 1960, 8(2):100-104.
[15] 童谷生, 赖泽坤. 基于有限断裂力学的FRP-混凝土界面粘结强度研究[J]. 华东交通大学学报, 2017, 34(4):13-21.TONG Gusheng, LAI Zekun. Bond strength analysis of FRP-concrete interface based on finite fracture mechanics[J]. Journal of East China JiaoTong University, 2017, 34(4):13-21.
[16] 童谷生, 盛杰辉. 基于临界距离理论砂浆梁断裂性能的研究[J]. 华东交通大学学报, 2019, 36(4):102-112.TONG Gusheng, SHENG Jiehui. Research on fracture performance of mortar beam based on theory of critical distance[J]. Journal of East China JiaoTong University, 2019, 36(4):102-112.
[17] 万云, 童谷生, 陈莘莘, 等. 低速冲击时冲击角度和摩擦对玻纤增强铝板性能的影响[J]. 哈尔滨工程大学学报, 2018, 39(5):897-901.WAN Yun, TONG Gusheng, CHEN Shenshen, et al. Influence of impact angle and friction on the performance of glass fiber reinforced aluminum laminates (GLARE) under low-velocity impact[J]. Journal of Harbin Engineering University, 2018, 39(5):897-901.

相似文献/References:

[1]赵士成,王振清,郭建明,等.混杂方式对CF/GF/环氧混杂复合材料低速冲击性能的影响[J].哈尔滨工程大学学报,2015,(11):1476.[doi:10.11990/jheu.201410061]
 ZHAO Shicheng,WANG Zhenqing,GUO Jianming,et al.Effect of hybrid style on the performance of CF/GF/epoxy hybrid composites subjected to low-velocity impact[J].hebgcdxxb,2015,(7):1476.[doi:10.11990/jheu.201410061]
[2]万云,童谷生,陈莘莘,等.低速冲击时冲击角度和摩擦对玻纤增强铝板性能的影响[J].哈尔滨工程大学学报,2018,39(05):897.[doi:10.11990/jheu.201611020]
 WAN Yun,TONG Gusheng,CHEN Shenshen,et al.Influence of impact angle and friction on the performance of glass fiber reinforced aluminum laminates (GLARE) under low-velocity impact[J].hebgcdxxb,2018,39(7):897.[doi:10.11990/jheu.201611020]

备注/Memo

备注/Memo:
收稿日期:2019-01-09。
基金项目:国家自然科学基金项目(11462006,51968022);江西省教育厅基金项目(GJJ190304);江西省重点研发计划(20171BBE50024,20181BBG70006).
作者简介:万云,男,讲师,博士.
通讯作者:万云,E-mail:wanyun0505@163.com.
更新日期/Last Update: 2020-08-15