[1]郑崇伟,裴顺强,李伟.“21世纪海上丝绸之路”:未来40年波浪能长期预估[J].哈尔滨工程大学学报,2020,41(7):958-965.[doi:10.11990/jheu.201902019]
 ZHENG Chongwei,PEI Shunqiang,LI Wei.Projection of wave energy resource for the next 40 years in the 21st-century Maritime Silk Road[J].hebgcdxxb,2020,41(7):958-965.[doi:10.11990/jheu.201902019]
点击复制

“21世纪海上丝绸之路”:未来40年波浪能长期预估(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年7期
页码:
958-965
栏目:
出版日期:
2020-07-05

文章信息/Info

Title:
Projection of wave energy resource for the next 40 years in the 21st-century Maritime Silk Road
作者:
郑崇伟123 裴顺强4 李伟1
1. 海军大连舰艇学院 航海系, 辽宁 大连 116018;
2. 中国科学院大气物理研究所 LASG国家重点实验室, 北京 100029;
3. 中国海洋大学 山东省海洋工程重点实验室, 山东 青岛 266100;
4. 中国气象局办公室, 北京 100081
Author(s):
ZHENG Chongwei123 PEI Shunqiang4 LI Wei1
1. Department of Navigation, Dalian Naval Academy, Dalian 116018, China;
2. National Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG), Institute of Atmospheric Physics, the Chinese Academy of Sciences, Beijing 100029, China;
3. Shandong Provincial Key Laboratory of Ocean Engineering, Ocean University of China, Qingdao 266100, China;
4. Headquarters Office of China Meteorological Administration, Beijing 100081, China
关键词:
海上丝绸之路波浪能长期预估WW3海浪模式CMIP5风场能流密度可利用率富集程度
分类号:
P743.2
DOI:
10.11990/jheu.201902019
文献标志码:
A
摘要:
针对波浪能长期规划的难题,本文建立了一套波浪能预估模型,并以“海上丝路”作为实例,以CMIP5风场驱动WW3海浪模式,对“海上丝路”2020—2059年的波浪能展开预估,覆盖能流密度、可利用率、富集程度、稳定性、资源月际差异等一系列关键指标。结果表明“海上丝路”未来40 a的波浪能整体趋于乐观:1)未来40 a平均状态下,“海上丝路”的能流密度为12~20 kW/m;南海和孟加拉湾未来的WPD高于历史状态,阿拉伯海则相反。2)该海域未来40 a平均的资源可用率、富集程度均比历史状态乐观。3)“海上丝路”未来40 a平均的资源稳定性好于历史状态(阿拉伯海未来2月和8月除外),其中孟加拉湾的稳定性好于南海和阿拉伯海。4)阿拉伯海未来40 a平均的月际差异最大,南海次之,孟加拉湾最小。阿拉伯海和南海未来的月际差异小于历史状态,孟加拉湾的月际差异与历史状态接近。

参考文献/References:

[1] LIANG Bingchen, LIU Xin, LI Huajun, et al. Wave climate hindcasts for the Bohai Sea, Yellow Sea, and East China Sea[J]. Journal of coastal research, 2016, 32(1):172-180.
[2] ZHENG Chongwei, LI Chongyin. Propagation characteristic and intraseasonal oscillation of the swell energy of the Indian Ocean[J]. Applied energy, 2017, 197:342-353.
[3] 盛松伟, 游亚戈, 张亚群, 等. 漂浮式波浪能装置能量转换系统研究[J]. 机械工程学报, 2012, 48(24):141-146.SHENG Songwei, YOU Yage, ZHANG Yaqun, et al. Research on power take-off system of floating wave power device[J]. Journal of mechanical engineering, 2012, 48(24):141-146.
[4] WAN Yong, ZHANG Jie, MENG Junmin, et al. Exploitable wave energy assessment based on ERA-Interim reanalysis data-A case study in the East China Sea and the South China Sea[J]. Acta oceanologica sinica, 2015, 34(9):143-155.
[5] 林礼群, 吴必军, 王幸, 等. 复杂形状波力直线发电装置的优化[J]. 哈尔滨工程大学学报, 2014, 35(12):1529-1535.LIN Liqun, WU Bijun, WANG Xing, et al. Opt imization of complex-shaped wave energy linear power generation device[J]. Journal of Harbin Engineering University, 2014, 35(12):1529-1535.
[6] GLENDENNING I. Ocean wave power[J]. Applied energy, 1977, 3(3):197-222.
[7] WAN Yong, ZHANG Jie, MENG Junmin, et al. Study on wave energy resource assessing method based on altimeter data-A case study in Northwest Pacific[J]. Acta oceanologica sinica, 2016, 35(3):117-129.
[8] 郑崇伟, 李训强, 潘静. 近45年南海-北印度洋波浪能资源评估[J]. 海洋科学, 2012, 36(6):101-104.ZHENG Chongwei, LI Xunqiang, PAN Jing. Wave energy analysis of the South China Sea and the North Indian Ocean in recent 45 years[J]. Marine sciences, 2012, 36(6):101-104.
[9] REGUERO B G, LOSADA I J, MéNDEZ F J. A global wave power resource and its seasonal, interannual and long-term variability[J]. Applied energy, 2015, 148:366-380.
[10] 郑崇伟, 李崇银. 关于海洋新能源选址的难点及对策建议——以波浪能为例[J]. 哈尔滨工程大学学报, 2018, 39(2):200-206.ZHENG Chongwei, LI Chongyin. Overview of site selection difficulties for marine new energy power plant and suggestions:wave energy case study[J]. Journal of Harbin Engineering University, 2018, 39(2):200-206.
[11] 姜波, 丁杰, 武贺, 等. 渤海、黄海、东海波浪能资源评估[J]. 太阳能学报, 2017, 38(6):1711-1716.JIANG Bo, DING Jie, WU He, et al. Wave energy resource assessment along Bohai Sea, Yellow Sea and East China Sea[J]. Acta energiae solaris sinica, 2017, 38(6):1711-1716.
[12] 郑崇伟, 高成志, 高悦. "21世纪海上丝绸之路"波浪能的气候特征及变化趋势[J]. 太阳能学报, 2019, 40(6):1487-1493.ZHENG Chongwei, GAO Chengzhi, GAO Yue. Climate feature and long term trend analysis of wave energy resource of 21st Century Maritime Silk Road[J]. Acta energiae solaris sinica, 2019, 40(6):1487-1493.
[13] 史宏达, 王传崑. 我国海洋能技术的进展与展望[J]. 太阳能, 2017(3):30-37.SHI Hongda, WANG Chuankun. Development and prospect of Marine energy technology in China[J]. Solar energy, 2017(3):30-37.
[14] ZHENG Chongwei, WANG Qing, LI Chongyin. An overview of medium- to long-term predictions of global wave energy resources[J]. Renewable and sustainable energy reviews, 2017, 79:1492-1502.
[15] WANG X L, FENG Yang, SWAIL V R. Changes in global ocean wave heights as projected using multimodel CMIP5 simulations[J]. Geophysical research letters, 2014, 41(3):1026-1034.
[16] 郑崇伟, 高悦, 陈璇. 巴基斯坦瓜达尔港风能资源的历史变化趋势及预测[J]. 北京大学学报(自然科学版), 2017, 53(4):617-626.ZHENG Chongwei, GAO Yue, CHEN Xuan. Climatic long term trend and prediction of the wind energy resource in the Gwadar Port[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53(4):617-626.
[17] CASAS-PRAT M, WANG X L, SWART N. CMIP5-based global wave climate projections including the entire Arctic Ocean[J]. Ocean modelling, 2018, 123:66-85.
[18] DOBRYNIN M, MURAWSKY J, YANG S. Evolution of the global wind wave climate in CMIP5 experiments[J]. Geophysical research letters, 2012, 39(18):L18606, DOI:10.1029/2012GL052843.
[19] HEMER M A, TRENHAM C E. Evaluation of a CMIP5 derived dynamical global wind wave climate model ensemble[J]. Ocean modelling, 2016, 103:190-203.
[20] 任建莉, 罗誉娅, 陈俊杰, 等. 海洋波浪信息资源评估系统的波力发电应用研究[J]. 可再生能源, 2009, 27(3):93-97.REN Jianli, LUO Yuya, CHEN Junjie, et al. Research on wave power application by the information system for ocean wave resources evaluation[J]. Renewable energy, 2009, 27(3):93-97.
[21] CORNETT A M. A global wave energy resource assessment[C]//Proceedings of the Eighteenth (2008) International Offshore and Polar Engineering Conference. Canada, 2008.

相似文献/References:

[1]吴必军,盛松伟,张运秋,等.复杂圆柱型波能装置能量转换特性研究[J].哈尔滨工程大学学报,2010,(08):0.
 WU Bi jun,SHENG Song wei,ZHANG Yun qiu,et al.Wavepower conversion characteristics of a complex vertical cylinder[J].hebgcdxxb,2010,(7):0.
[2]林礼群,吴必军,王幸,等.复杂形状波力直线发电装置的优化[J].哈尔滨工程大学学报,2014,(12):1529.[doi:10.3969/j.issn.1006-7043.201308068]
 Lin Liqun,WU Bijun,WANG Xing,et al.Optimization of complex-shaped wave energy linear power generation device[J].hebgcdxxb,2014,(7):1529.[doi:10.3969/j.issn.1006-7043.201308068]
[3]郑崇伟,李崇银.关于海洋新能源选址的难点及对策建议——以波浪能为例[J].哈尔滨工程大学学报,2018,39(02):200.[doi:10.11990/jheu.201704021]
 ZHENG Chongwei,LI Chongyin.Overview of site selection difficulties for marine new energy power plant and suggestions: wave energy case study[J].hebgcdxxb,2018,39(7):200.[doi:10.11990/jheu.201704021]
[4]伍儒康,吴必军,王文胜.稳定流和不稳定流中Wells透平的流动特性[J].哈尔滨工程大学学报,2019,40(07):1224.[doi:10.11990/jheu.201805091]
 WU Rukang,WU Bijun,WANG Wensheng.The flow characteristics of Wells turbine in steady and unsteady flows[J].hebgcdxxb,2019,40(7):1224.[doi:10.11990/jheu.201805091]
[5]杨鲲,卢倪斌,隋海琛,等.基于D-H方法的波浪滑翔器动力学仿真分析[J].哈尔滨工程大学学报,2020,41(1):145.[doi:10.11990/jheu.201901111]
 YANG Kun,LU Nibin,SUI Haichen,et al.Dynamic simulation analysis on wave glider based on D-H approach[J].hebgcdxxb,2020,41(7):145.[doi:10.11990/jheu.201901111]
[6]郑崇伟,李崇银.海洋强国视野下的“海上丝绸之路”海洋新能源评估[J].哈尔滨工程大学学报,2020,41(2):175.[doi:10.11990/jheu.201911007]
 ZHENG Chongwei,LI Chongyin.Evaluation of new marine energy for the Maritime Silk Road from the perspective of maritime power[J].hebgcdxxb,2020,41(7):175.[doi:10.11990/jheu.201911007]

备注/Memo

备注/Memo:
收稿日期:2019-02-21。
基金项目:国际(地区)合作与交流项目(41520104008);河口海岸学国家重点实验室开放基金项目(SKLEC-KF201707).
作者简介:郑崇伟,男,讲师,博士;裴顺强,男,高级工程师.
通讯作者:郑崇伟,E-mail:chinaoceanzcw@sina.cn.
更新日期/Last Update: 2020-08-15