[1]王振杰,刘杨范,赵爽,等.K-Means++的声速剖面精简方法[J].哈尔滨工程大学学报,2020,41(7):985-990.[doi:10.11990/jheu.201903072]
 WANG Zhenjie,LIU Yangfan,ZHAO Shuang,et al.Streamlined method for sound velocity profile based on K-Means++[J].hebgcdxxb,2020,41(7):985-990.[doi:10.11990/jheu.201903072]
点击复制

K-Means++的声速剖面精简方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
41
期数:
2020年7期
页码:
985-990
栏目:
出版日期:
2020-07-05

文章信息/Info

Title:
Streamlined method for sound velocity profile based on K-Means++
作者:
王振杰 刘杨范 赵爽 王柏杨 孟庆波
中国石油大学(华东) 地球科学与技术学院, 山东 青岛 266555
Author(s):
WANG Zhenjie LIU Yangfan ZHAO Shuang WANG Boyang MENG Qingbo
School of Geosciences, China University of Petroleum(East China), Qingdao 266555, China
关键词:
声速剖面精简K-Means++常梯度声线跟踪浮标定位非等间距分层不同深度梯度效率
分类号:
P733.2
DOI:
10.11990/jheu.201903072
文献标志码:
A
摘要:
在深海定位中,声线传播距离长、声速剖面层数多,采用常梯度声线跟踪虽然提高了定位精度,但明显降低了定位的计算效率。针对这一问题,本文引入优化聚类算法,提出了一种基于K-Means++的声速剖面精简方法。该方法将原始声速剖面的梯度分为正负2个部分,采用K-Means++对每部分进行初始聚类,再对聚类后的每一簇进行不同类别数的K-Means++聚类,将相邻相同类的层合并后得到精简声速剖面。采用精简声速剖面进行水下定位,并与原始声速剖面定位效果对比。实验结果表明:本文方法在确保原始声速剖面空间结构和水下定位精度的前提下,显著提高了定位计算效率,且在不同深度的定位精度与原始声速剖面定位精度保持一致。

参考文献/References:

[1] ZHANG Jucheng, HAN Yunfeng, ZHENG Cuie, et al. Underwater target localization using long baseline positioning system[J]. Applied acoustics, 2016, 111:129-134.
[2] RAMEZANI H, LEUS G. Accurate ranging in a stratified underwater medium with multiple isogradient sound speed profile layers[J]. IFAC proceedings volumes, 2012, 45(5):146-151.
[3] 张居成. 深水长基线定位导航技术研究[D]. 哈尔滨:哈尔滨工程大学, 2014.ZHANG Jucheng. Research of deepwater LBL positoning and navigation technology[D]. Harbin:Harbin Engineering University, 2014.
[4] HUANG Chenfen, GERSTOFT P, HODGKISS W S. Effect of ocean sound speed uncertainty on matched-field geoacoustic inversion[J]. The journal of the acoustical society of America, 2008, 123(6):EL162-EL168.
[5] 齐娜, 田坦. 多波束条带测深中的声线跟踪技术[J]. 哈尔滨工程大学学报, 2003, 24(3):245-248.QI Na, TIAN Tan. Ray tracing in multi-beam swath bathymetry[J]. Journal of Harbin Engineering University, 2003, 24(3):245-248.
[6] 刘伯胜, 雷家煜. 水声学原理[M]. 2版. 哈尔滨:哈尔滨工程大学出版社, 2010.LIU Bosheng, LEI Jiayu. The principle of hydroacoustics[M]. 2nd ed. Harbin:Harbin Engineering University Press, 2010.
[7] 张志伟, 暴景阳, 金山. 一种多波束测深声线跟踪自适应分层方法[J]. 海洋测绘, 2018, 38(1):23-26, 42.ZHANG Zhiwei, BAO Jingyang, JIN Shan. A self-adapting division method for ray-tracing of multibeam echosounding[J]. Hydrographic surveying and charting, 2018, 38(1):23-26, 42.
[8] GENG Xueyi, ZIELINSKI A. Precise multibeam acoustic bathymetry[J]. Marine geodesy, 1999, 22(3):157-167.
[9] 郑根, 张红梅, 冯磊, 等. 基于面积差的声速剖面自适应简化方法[J]. 测绘学报, 2018, 47(10):1415-1423.ZHENG Gen, ZHANG Hongmei, FENG Lei, et al. An adaptive simplification method of SVP based on area difference[J]. Acta geodaetica et cartographica sinica, 2018, 47(10):1415-1423.
[10] BEAUDOIN J, SMYTH S, FURLONG A, et al. Streamlining sound speed profile pre-processing:case studies and field trials[C]//Proceedings of 2011 U.S. Hydrographic Conference. Tampa, FL, USA, 2011:811.
[11] 张居成, 郑翠娥, 孙大军. 用于声线跟踪定位的自适应分层方法[J]. 哈尔滨工程大学学报, 2013, 34(12):1497-1501.ZHANG Jucheng, ZHENG Cuie, SUN Dajun. A self-adapting division method for ray-tracing positioning[J]. Journal of Harbin Engineering University, 2013, 34(12):1497-1501.
[12] 李圣雪, 王振杰, 聂志喜, 等. 一种适用于深海长基线定位的自适应分层声线跟踪法[J]. 海洋通报, 2015, 34(5):491-498.LI Shengxue, WANG Zhenjie, NIE Zhixi, et al. A self-adapting division ray-tracing method in the long baseline acoustic positioning[J]. Marine science bulletin, 2015, 34(5):491-498.
[13] ZHAO Dineng, WU Ziyin, ZHOU Jieqiong, et al. A new method of automatic SVP optimization based on MOV algorithm[J]. Marine geodesy, 2015, 38(3):225-240.
[14] DOUGLAS D H, PEUCKER T K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature[J]. Cartographica, 1973, 10(2):112-122.
[15] ARTHUR D, VASSILVITSKⅡ S. k-means++:The advantages of careful seeding[C]//Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms. New Orleans, USA, 2007:1027-1035.
[16] MACQUEEN J B. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, 1967:281-297.
[17] MUNK W H. Sound channel in an exponentially stratified ocean, with application to SOFAR[J]. The journal of the acoustical society of America, 1974, 55(2):220-226.
[18] WILSON W D. Speed of sound in sea water as a function of temperature, pressure, and salinity[J]. The journal of the acoustical society of America, 1960, 32(6):641-644.
[19] 王燕, 梁国龙. 一种适用于长基线水声定位系统的声线修正方法[J]. 哈尔滨工程大学学报, 2002, 23(5):32-34.WANG Yan, LIANG Guolong. Correction of sound velocity in long baseline acoustic positioning system[J]. Journal of Harbin Engineering University, 2002, 23(5):32-34.

相似文献/References:

[1]郑广赢,黄益旺.微扰法声速剖面反演改进算法[J].哈尔滨工程大学学报,2017,38(03):371.[doi:10.11990/jheu.201603075]
 ZHENG Guangying,HUANG Yiwang.Improved perturbation method for sound speed profile inversion[J].hebgcdxxb,2017,38(7):371.[doi:10.11990/jheu.201603075]
[2]汪洋,刘清宇,鹿力成,等.海面风浪影响下的浅海声传播预报方法[J].哈尔滨工程大学学报,2020,41(8):1163.[doi:10.11990/jheu.201909005]
 WANG Yang,LIU Qingyu,LU Licheng,et al.A method of acoustic propagation prediction considering the impact of wind waves in shallow water[J].hebgcdxxb,2020,41(7):1163.[doi:10.11990/jheu.201909005]

备注/Memo

备注/Memo:
收稿日期:2019-03-22。
基金项目:国家重点研发计划(2016YFB0501700,2016YFB0501705);国家自然科学基金项目(41374008);青岛海洋科学与技术国家实验室开放基金项目(QNLM2016ORP0401).
作者简介:王振杰,男,教授,博士生导师;刘杨范,男,硕士研究生.
通讯作者:刘杨范,E-mail:1218458295@qq.com.
更新日期/Last Update: 2020-08-15