[1]陈卫东,陈浩,于艳春.有限体积法的弹性结构动力学随机分析[J].哈尔滨工程大学学报,2011,(11):1447-1451.[doi:doi:10.3969/j.issn.1006-7043.2011.11.010]
 CHEN Weidong,CHEN Hao,YU Yanchun.Dynamic stochastic analysis of an elastic structure based on the finite volume method[J].hebgcdxxb,2011,(11):1447-1451.[doi:doi:10.3969/j.issn.1006-7043.2011.11.010]
点击复制

有限体积法的弹性结构动力学随机分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2011年11期
页码:
1447-1451
栏目:
出版日期:
2011-11-25

文章信息/Info

Title:
Dynamic stochastic analysis of an elastic structure based on the finite volume method
文章编号:
1006-7043(2011)11-1447-05
作者:
陈卫东 陈浩 于艳春
哈尔滨工程大学 航天与建筑工程学院,黑龙江 哈尔滨 150001
Author(s):
CHEN WeidongCHEN HaoYU Yanchun
College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
弹性结构动力学随机分析爆炸有限体积法蒙特卡洛法随机载荷
分类号:
TB114.3
DOI:
doi:10.3969/j.issn.1006-7043.2011.11.010
文献标志码:
A
摘要:
为了研究随机载荷对弹性结构动响应随机性的影响,基于有限体积法(FVM)发展了一种求解弹性结构随机动响应统计特性的计算方法.基于FVM的控制方程推导出响应量对基本随机变量偏导的显式求解方程,接着将响应量在随机变量的均值点处进行泰勒展开,并在展开式两端同时取均值或方差可求得响应量的均值和方差;最终,考虑炸药的装药量和爆距作为基本随机变量,研究了固支板在远场爆炸载荷作用下的随机动响应问题,并与蒙特卡洛法的结果作了对比,证明了该方法的可行性,同时也为工程应用提供了参考.通过对结构动响应变异系数的分析表明:在随机爆炸载荷作用下,弹性体内各点动响应的变异系数绝对值是相同的,且不随时间变化.

参考文献/References:

[1]姚熊亮, 郭君, 许维军. 船舶结构远场爆炸冲击动响应的数值试验方法[J]. 中国造船, 2006, 47(2): 24-34. YAO Xiongliang, GUO Jun, XU Weijun. Far field numerical experimental method on the explosion impact dynamic responses of ship[J]. Ship Building of China, 2006, 47(2): 24-34.
[2]安伟光, 蔡荫林, 陈卫东. 随机结构系统可靠性分析与优化设计[M]. 哈尔滨: 哈尔滨工程大学出版社, 2005: 65-93. AN Weiguang, CAI Yinlin, CHEN Weidong. Reliability analysis and optimal design of stochastic structural system[M]. Harbin: Harbin Engineering University Press, 2005: 65-93.
[3]LIN J H, ZHANG W S, WILLIAMS F W. Pseudo-excitation algorithm for non-stationary random seismic responses[J]. Eng Struct, 1994, 16(4): 270-276.
[4]慕文品. 受演变随机激励结构响应的扩展精细积分方法[J]. 振动与冲击, 2009, 28(7): 131-134. MU Wenpin. An extended precise integration method for response of a structure subjected to evolutionary random exciation[J]. Journal of Vibration and Shock, 2009, 28(7): 131-134.
[5]XIA Guohua, LIN Chinglong. An unstructured finite volume approach for structural dynamics in response to fluid motions[J]. Computers & Structures, 2008, 86(7/8): 684-701.
[6]LV X, ZHAO Y, HUANG X Y, XIA G H, SU X H. A matrix-free implicit unstructured multigrid finite volume method for simulating structural dynamics and fluid-structure interaction[J]. Journal of Computational Physics, 2007, 225: 120-144.
[7]CHEN Weidong, CHEN Hao, ZHANG Wenping, et al. A finite volume method for 3-D elastodynamics[C]//Proceedings of the Third International Conference on Modeling and Simulation, VOL2-modelling and simulation in Engineering. Wuxi, China, 2010: 88-91.
[8]张雄, 王天舒. 计算动力学[M]. 北京: 清华大学出版社, 2007: 266-268.
[9]赵均海, 汪梦甫. 弹性力学及有限元[M]. 2版. 武汉: 武汉理工大学出版社, 2008: 167-169.
[10]恽寿榕, 赵衡阳. 爆炸力学[M]. 北京: 国防工业出版社, 2005: 233-240.
[11]何建, 肖玉凤, 陈振勇,等. 空爆载荷作用下固支矩形钢板的塑性极限变形[J]. 哈尔滨工业大学学报, 2007, 39(2): 310-313. HE Jian, XIAO Yufeng, CHEN Zhenyong, et al. Plastic limited deformation analysis of the clamped rectangular steel plate subjected to air non-contact explosions[J]. Journal of Harbin Institute of Technology, 2007, 39(2): 310-313.
[12]LIANG C C, TAI Y S. Shock responses of a surface ship subjected to noncontact underwater explosions[J]. Ocean Engineering, 2006, 33: 748-772.

备注/Memo

备注/Memo:
国家自然科学基金资助项目 (10772055)
更新日期/Last Update: 2011-12-09