[1]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2010,(11):0.
 College of Information and Communication Engineering,Harbin Engineering University,Harbin,et al.Anomaly detection algorithm for hyperspectral image by using selective section principal component analysis[J].hebgcdxxb,2010,(11):0.
点击复制

采用选择性分段PCA算法的高光谱图像异常检测(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2010年11期
页码:
0
栏目:
出版日期:
2010-11-25

文章信息/Info

Title:
Anomaly detection algorithm for hyperspectral image by using selective section principal component analysis
作者:
赵春晖 胡春梅石红
哈尔滨工程大学 信息与通信工程学院,黑龙江 哈尔滨 150001
Author(s):
College of Information and Communication Engineering Harbin Engineering University Harbin 15001 China
关键词:
高光谱图像选择性分段主成分分析局部平均奇异度KRX异常检测
文献标志码:
A
摘要:
高光谱图像维数高且数据量大给数据分析和处理带来了极大的困难。针对此问题,本文提出了一种基于选择性分段主成分分析(selective section principal component analysis, SSPCA)算法的异常检测方法。该算法首先根据波段之间的相关性将一组多维的高光谱数据划分成多组波段子集,然后分别对各波段子集进行主成分分析,并综合每个波段子集中局部平均奇异度最大的一个波段,用于最后的KRX异常检测。最后用AVIRIS高光谱数据进行了实验研究,并与KRX算法以及选取信息量最大波段的相应算法进行了比较。结果表明,其检测性能得到了较好地改善,取得了较好的检测效果和较低的虚警率。

参考文献/References:

[1]  童庆禧,张兵,郑兰芬高光谱遥感——原理、技术与应用[M]. 北京:高等教育出版社,2006218~237

TONG Qingxi, ZHANG Bing, ZHENG Lanfen. Hyperspectral Remote Principle,   Te chnique  and Application[M]. Beijing:   Higher Education Press , 2006218~237

[2]  贺霖,潘泉,赵永强基于波段子集特征融合的高光谱图像异常检测[J]. 光子学报,200534(11): 1752-1755

HE Lin, PAN Quan, ZHAO Yongqiang. Anomaly Detcetion Based on Feature Fusion of Band Subset for Hyperspec- tral image[J]. ATCA PHOTONICA SINICA, 2005, 34(11): 1752-1755

[3]  张媛,何明一,梅少辉基于主分量和独立成分分析的多光谱目标检测[J]. 遥感技术与应用,200621(3) 227-231

ZHANG Yuan, HEMingyi, MEI Shaohui.  Target   Detection of   Multi—spectral   Image   Based on PCA and ICA [J]. REMOTE SENSING TECHNOLOGY AND APPLICA- TION, 2006, 21(3): 227-231

[4]  GU Yanfeng, LIU Ying, ZHANG Ye. A selective kernel PCA algorithm for anomaly detection in hyperspectral imagery[J]. IEEE Trans. Geosci. Remote Sensing, 2006, 2(10): 725-728

[5]  K WON  H N ASRABADI  N   M.  Hyperspectral anomaly detection using kernel RX-algorithm[C].   2004 International Conference on  Iamge Processing, 2004,  Vol.5 : 3331-3334

[6]  K WON  H N ASRABADI  N   M. Kernel RX-algorithm: A nonlinear anomaly detector for hyperspectral imagery [J].   IEEE Trans.   Geosci. Remote Sens ing 2005,  43(2) 388 - 397

[7]  S CHOLKOPF  B ,  S MOLA  A   J.  Learning  w ith  k ernels   [M] Cambridge : The  MIT Press, 2002 : 1~21

[8]  S CHOLKOPF  B ,  S MOLA  A   J ,  M ULLER   R.   Kernel  p rincipal component analysis [J] Neural Compu tation,   1999 ,   24( 10 ):  1299–131

[9]  梅锋赵春晖基于空域滤波的核RX高光谱图像异常检测算法[J] .  哈尔滨工程大学学报,2009, 30(6)697~720 .

     MEI Feng, ZHAO Chun-hui Spatial filter based anomaly detection algorithm for hyperspectral imagery kernel RX detectors [J].  Journal of Harbin Engineering University 2009, 30(6)697~720 .

[10]  赵春晖王楠楠基于背景抑制及顶点成分分析的高光谱异常小目标检测[J] 应用科技, 2009,  36 ( 9 ):  11 ~ 14 .

ZHAO Chun-hui, WANG Nan-nan Anomaly detection of hyperspectral imagery based on background restrain and VCA [J].  Applied Science and Technology 2009,  36 ( 9 ):  11 ~ 14 .

相似文献/References:

[1]刘振林,谷延锋,张晔.一种用于高光谱图像特征提取的子空间核方法[J].哈尔滨工程大学学报,2014,(02):238.[doi:10.3969/j.issn.10067043.201309025]
 LIU Zhenlin,GU Yanfeng,ZHANG Ye.A subspace kernel learning method for feature extraction of the hyperspectral image[J].hebgcdxxb,2014,(11):238.[doi:10.3969/j.issn.10067043.201309025]
[2]刘丹凤,王立国,赵亮.高光谱图像的同步彩色动态显示[J].哈尔滨工程大学学报,2014,(06):760.[doi:10.3969/j.issn.10067043.201306008]
 LIU Danfeng,WANG Liguo,ZHAO Liang.Dynamic display of the hyperspectral image synchronized colors[J].hebgcdxxb,2014,(11):760.[doi:10.3969/j.issn.10067043.201306008]
[3]杨京辉,王立国,钱晋希.基于相关向量机的高光谱图像解混方法[J].哈尔滨工程大学学报,2015,(02):267.[doi:10.3969/j.issn.1006-7043.201311016]
 YANG Jinghui,WANG Liguo,QIAN Jinxi.An unmixing algorithm based on the relevance vector machine for hyperspectral imagery[J].hebgcdxxb,2015,(11):267.[doi:10.3969/j.issn.1006-7043.201311016]
[4]赵春晖,靖晓昊,李威.基于StOMP稀疏方法的高光谱图像目标检测[J].哈尔滨工程大学学报,2015,(07):992.[doi:10.3969/j.issn.1006-7043.201404087]
 ZHAO Chunhui,JING Xiaohao,LI Wei.Hyperspectral image target detection algorithm based on StOMP sparse representation[J].hebgcdxxb,2015,(11):992.[doi:10.3969/j.issn.1006-7043.201404087]
[5]赵春晖,王佳,王玉磊.采用背景抑制和自适应阈值分割的高光谱异常目标检测[J].哈尔滨工程大学学报,2016,37(02):278.[doi:10.11990/jheu.201409035]
 ZHAO Chunhui,WANG Jia,WANG Yulei.Hyperspectral anomaly detection based on background suppression and adaptive threshold segmentation[J].hebgcdxxb,2016,37(11):278.[doi:10.11990/jheu.201409035]
[6]王立国,宛宇美,路婷婷,等.结合经验模态分解和Gabor滤波的高光谱图像分类[J].哈尔滨工程大学学报,2016,37(02):284.[doi:10.11990/jheu.201411032]
 WANG Liguo,WAN Yumei,LU Tingting,et al.Hyperspectral image classification by combining empirical mode decomposition with Gabor filtering[J].hebgcdxxb,2016,37(11):284.[doi:10.11990/jheu.201411032]
[7]王立国,杨月霜,刘丹凤.基于改进三重训练算法的高光谱图像半监督分类[J].哈尔滨工程大学学报,2016,37(06):849.[doi:10.11990/jheu.201505078]
 WANG Liguo,YANG Yueshuang,LIU Danfeng.Semi-supervised classification for hyperspectral image based on improved tri-training method[J].hebgcdxxb,2016,37(11):849.[doi:10.11990/jheu.201505078]
[8]赵春晖,王鑫鹏,闫奕名.基于密度背景纯化的高光谱异常检测算法[J].哈尔滨工程大学学报,2016,37(12):1722.[doi:10.11990/jheu.201511073]
 ZHAO Chunhui,WANG Xinpeng,YAN Yiming.Density background refinement-based anomaly detection algorithm for hyperspectral images[J].hebgcdxxb,2016,37(11):1722.[doi:10.11990/jheu.201511073]
[9]成宝芝,赵春晖,张丽丽.子空间稀疏表示高光谱异常检测新算法[J].哈尔滨工程大学学报,2017,38(04):640.[doi:10.11990/jheu.201604006]
 CHENG Baozhi,ZHAO Chunhui,ZHANG Lili.An anomaly detection algorithm for hyperspectral images using subspace sparse representation[J].hebgcdxxb,2017,38(11):640.[doi:10.11990/jheu.201604006]
[10]盛振国,王立国.改进的LLGC高光谱图像半监督分类[J].哈尔滨工程大学学报,2017,38(07):1086.[doi:10.11990/jheu.201605023]
 SHENG Zhenguo,WANG Liguo.Semi-supervised classification for hyperspectral images based on improved learning with the LLGC method[J].hebgcdxxb,2017,38(11):1086.[doi:10.11990/jheu.201605023]
[11]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2011,(01):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
 ZHAO Chunhui,HU Chunmei,SHI Hong.Anomaly detection for a hyperspectral image by using a selective section principal component analysis algorithm[J].hebgcdxxb,2011,(11):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]

备注/Memo

备注/Memo:
国家自然科学基金项目(61077079,60802059),哈尔滨市优秀学科带头人基金(2009RFXXG034)资助项目
更新日期/Last Update: 2011-01-04