[1]朱齐丹,闻子侠,张智,等.舰载机着舰侧回路混合H∞/H2模型参考LPV控制[J].哈尔滨工程大学学报,2013,(01):83-91.[doi:10.3969/j.issn.1006-7043.201204043]
 ZHU Qidan,WEN Zixia,ZHANG Zhi,et al.Carrier aircraft landing mixed H∞/H2 LPV model reference control during powered approach[J].hebgcdxxb,2013,(01):83-91.[doi:10.3969/j.issn.1006-7043.201204043]
点击复制

舰载机着舰侧回路混合H∞/H2模型参考LPV控制(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2013年01期
页码:
83-91
栏目:
出版日期:
2013-01-25

文章信息/Info

Title:
Carrier aircraft landing mixed H∞/H2 LPV model reference control during powered approach
文章编号:
1006-7043(2013)01-0083-09
作者:
朱齐丹闻子侠张智刘志林
哈尔滨工程大学自动化学院,黑龙江哈尔滨150001
Author(s):
ZHU Qidan WEN Zixia ZHANG Zhi LIU Zhilin
College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
舰载机切换控制模型参考控制混合的H∞/H2控制多参数依赖的Lyapunov函数线性变参数系统(LPV)横侧向解耦
分类号:
V249.11
DOI:
10.3969/j.issn.1006-7043.201204043
文献标志码:
A
摘要:
针对舰载机对中着舰过程中,滚转速率与侧滑角运动之间存在固有耦合的问题,特别是在低攻角的情况下,这种耦合导致滚转速率与侧滑角符号方向相反,并有较大侧滑,严重降低了飞机的飞行品质,分散了飞行员对中着舰操控过程的精力.推导出了一类具有参考模型H∞/H2 LFT (linear fractional transformation)的控制方法来解决这类耦合的侧向控制问题,H2控制不仅可抑制噪声干扰,还可降低通道间的耦合,实现着舰过程的解耦控制,使飞机的操纵响应满足参考模型的期望飞行品质,减少飞行员的工作负荷.对于着舰过程中由攻角变化而产生模型的大范围变化情况,采用线性变参数方法可解决这类具有模型不确性的参数依赖时变系统的精确控制问题.此外文中采用多Lyapunov函数的切换控制,进一步提高了闭环系统的整体性能.

参考文献/References:

[1]ANDERSON M R, CLARK C, DUNGAN G. Flight test maneuver design using a skill and rule-based pilot model[C]//IEEE International Conference on Intelligent Systems for the 21st Century. Vancouver, Canada 1995: 2682-2687.
[2]HEFFLEY K R. Outer-loop control factors for carrier aircraft RHE-NAV-90-TR-1[R]. Los Altos: Robert Heffley Engineering,1990.
[3]BALAS G J, FIALHO I, PACKARD A, et al. On the design of LPV controllers for the F-14 aircraft lateral-directional axis during powered approach[C]// Proceedings of the American Control Conference. Albuquerque, USA, 1997:123-127.
[4]袁锁中,杨一栋.基于H∞控制的侧向自动着舰引导系统设计[J].武器装备自动化, 2002, 21(6):1-3. YUAN Suozhong, YANG Yidong. The design of lateral automatic carrier landing system based on H-infinity control[J]. Armament Automation, 2002, 21(6):1-3.
[5]TOURNES C, LANDRUN B. F-14 aircraft lateral adaptive control using subspace stabilization[C]// AIAA Guidance Navigation and Control Conference and Exhibit. Montreal, Canada, 2001:1-11.
[6]ABERKANE S, PONSART J C, SAUTER D. Output feedback H2/H∞ control of a class of network fault tolerant control systems[J]. Asian Journal of Control, 2008, 10(1):34-44.
[7]CAIGNY J D, CAMINO J F, OLIVEIRA R C L F, et al. Gain-scheduled dynamic output feedback control for discrete-time LPV systems[J]. Journal of Robust Nonlinear Control, 2011, 22(5):535-558.
[8]叶思隽,王新民,张清江,等. 不确定系统混合H2/H∞鲁棒控制的直接迭代LMI方法[J].控制理论与应用, 2011, 28(2):247-255. YE Sijuan, WANG Xinmin, ZHANG Qingjiang, et al. Direct iterative LMI-based approach of mixed H-two/H-infinity robust control for uncertain systems[J]. Control Theory and Applications, 2011,28(2):247-255.
[9]VACHIRASRICIRIKUL S, NGAMROO I. Robust controller design of heat pump and plug-in hybrid electric vehicle for frequency control in a smart microgrid based on specified-structure mixed H2/H∞ control technique[J]. Applied Energy, 2011, 88 (11): 3860-3868.
[10]YUAN Y, HU Y N, SUN F C. Mixed H2/H∞ control using fuzzy singularly perturbed model with multiple perturbation parameters for gust load alleviation[J]. Tsinghua Science and Technology, 2011, 16(4):10-17.
[11]ALWI H, EDWARDS C, MARCOS A. Fault reconstruction using a LPV sliding mode observer for a class of LPV systems[J]. Journal of the Franklin Institute, 2012, 349(2): 510-530.
[12]HAMMOUDI M N, LOWERNBERG M H. Dynamic gain scheduled control of an F16 model[C]//AIAA Guidance Navigation and Control Conference and Exhibit. Honolulu USA, 2008:1-16.
[13]AMEHO Y, PREMPAIN E. Linear parameter varying controllers for the ADMIRE aircraft longitudinal dynamics[C]// 2011 American Control Conference. San Francisco, CA, USA, 2011:1315-1320.
[14]JONG Y S. Quasi-linear parameter varying representation of general aircraft dynamics over non-trim region NASA CR-2007-213926[R]. Virginia: Langley Research Center Hampton, NASA, 2007.
[15]FIALHO I, BALAS G J, PACKARD A K, et al. Gain-scheduled lateral control of the F-14 aircraft during powered approach landing[J]. Journal of Guidance Control and Dynamics, 2000, 23(3):450-458.
[16]BALAS G J, PACKARD A K, RENFROW J, et al. Control of the F-14 aircraft lateral-directional axis during powered approach[J]. Journal of Guidance Control and Dynamics, 1998, 21(6):899-908.
[17]SATO M. Inverse system design for LPV systems using parameter-dependent Lyapunov functions[J]. Automatica, 2008, 44(4): 1072-1077.
[18]LU B, WU F. Switching LPV control designs using multiple parameter-dependent Lyapunov functions[J]. Automatica, 2004,40(11): 1973-1980.
[19]LU B, WU F. Control design of switched LPV systems using multiple parameter-dependent Lyapunov functions[C]// Proceedings of the 2004 American Control Conference. Boston, USA, 2004: 3875-3880.
[20]LIU Q, VITTAL V, ELIA N. Expansion of system operating range by an interpolated LPV FACTS controller using multiple Lyapunov functions[J]. IEEE Transactions on Power Systems, 2006, 21(3): 1311-1320.
[21]GAHNIET P, NEMIROVKI A, LAUB A J, et al. LMI control toolbox[M]. Natick: The MathWorks Inc. 1995: (5-15)-(5-21).
[22]TRANKLE T L, BACHNER S D. Identification of a nonlinear aerodynamic model of the F-14 aircraft[J]. Journal of Guidance Control and Dynamics, 1995 18(6): 1292-1297.

相似文献/References:

[1]王立辉,朱齐丹,李新飞.液压式阻拦系统的数学建模及仿真[J].哈尔滨工程大学学报,2012,(03):330.[doi:10.3969/j.issn.1006-7043.201102018]
 WANG Lihui,ZHU Qidan,LI Xinfei.The mathematical model and simulation of a hydraulic arresting gear system[J].hebgcdxxb,2012,(01):330.[doi:10.3969/j.issn.1006-7043.201102018]
[2]林孝工,谢业海,赵大威,等.基于滞后-停留时间切换控制的输入受限系统[J].哈尔滨工程大学学报,2012,(06):720.[doi:10.3969/j.issn.1006-7043.201107028]
 LIN Xiaogong,XIE Yehai,ZAHO Dawei,et al.Switching control of an input-constrained system via hysteresis logic and dwell-time logic[J].hebgcdxxb,2012,(01):720.[doi:10.3969/j.issn.1006-7043.201107028]
[3]朱齐丹,李新飞,喻勇涛.考虑载荷突卸的舰载机弹射起飞动力学分析[J].哈尔滨工程大学学报,2012,(09):1150.[doi:10.3969/j.issn.1006-7043. 201111078]
 ZHU Qidan,LI Xinfei,YU Yongtao.Analysis of dynamic characteristics of catapult launch for a carrier-based aircraft with sudden load discharge[J].hebgcdxxb,2012,(01):1150.[doi:10.3969/j.issn.1006-7043. 201111078]
[4]刘钦辉,邱长华,王能建.考虑空间约束的舰载机作业调度模型研究[J].哈尔滨工程大学学报,2012,(11):1435.[doi:10.3969/j.issn.1006-7043. 201109024]
 LIU Qinhui,QIU Changhua,WANG Nengjian.Study on ship-based aircraft operation scheduling model considering spatial restriction[J].hebgcdxxb,2012,(01):1435.[doi:10.3969/j.issn.1006-7043. 201109024]
[5]夏国清,陈红召.面向使用可用度的舰载机可修备件库存模型[J].哈尔滨工程大学学报,2013,(01):98.[doi:10.3969/j.issn.1006-7043. 201203070]
 XIA Guoqing,CHEN Hongzhao.Operational availability oriented inventory model for repairable spare parts of embarked air-wings[J].hebgcdxxb,2013,(01):98.[doi:10.3969/j.issn.1006-7043. 201203070]
[6]张智,林圣琳,夏桂华,等.舰载机甲板调运过程避碰路径规划研究[J].哈尔滨工程大学学报,2014,(01):9.[doi:10.3969/j.issn.1006-7043.201304025]
 ZHANG Zhi,LIN Shenglin,XIA Guihua,et al.Collision avoidance path planning for an aircraft in scheduling process on deck[J].hebgcdxxb,2014,(01):9.[doi:10.3969/j.issn.1006-7043.201304025]
[7]夏桂华,董然,孟雪,等.舰载机着舰的动力学建模[J].哈尔滨工程大学学报,2014,(04):445.[doi:10.3969/j.issn.10067043.201309033]
 XIA Guihua,DONG Ran,MENG Xue,et al.Research on the dynamic modeling for the landing of a carrierbased aircraft[J].hebgcdxxb,2014,(01):445.[doi:10.3969/j.issn.10067043.201309033]
[8]张智,闻子侠,朱齐丹,等.舰载机阻拦过程动力学仿真[J].哈尔滨工程大学学报,2014,(05):571.[doi:10.3969/j.issn.10067043.201305035]
 ZHANG Zhi,WEN Zixia,ZHU Qidan,et al.Kinetic simulation of shipboard arresting system[J].hebgcdxxb,2014,(01):571.[doi:10.3969/j.issn.10067043.201305035]
[9]李新飞,王立辉,朱齐丹,等.考虑弹射起飞的航母剩余甲板长度研究[J].哈尔滨工程大学学报,2015,(01):113.[doi:10.3969/j.issn.1006-7043.201310039]
 LI Xinfei,WANG Lihui,ZHU Qidan,et al.Analysis of deck edge distance taking into account the catapult launch[J].hebgcdxxb,2015,(01):113.[doi:10.3969/j.issn.1006-7043.201310039]
[10]张智,李佳桐,董然,等.针对舰艉流抑制的ACLS纵向控制律优化设计[J].哈尔滨工程大学学报,2016,37(06):802.[doi:10.11990/jheu.201504065]
 ZHANG Zhi,LI Jiatong,DONG Ran,et al.Optimal design of longitudinal automatic carrier landing system for carrier air wake rejection[J].hebgcdxxb,2016,37(01):802.[doi:10.11990/jheu.201504065]

备注/Memo

备注/Memo:
国家国际科技合作专项基金资助项目(2013DFR10030);国家自然科学基金资助项目(61104037);中央高校基金资助项目(HEUCFR1115)
更新日期/Last Update: 2013-04-02