[1]唐友刚,张少洋,王臻魁,等.裸置海底管道侧向往复运动土抗力试验研究[J].哈尔滨工程大学学报,2016,37(01):76-80.[doi:10.11990/jheu.201410038]
 TANG Yougang,ZHANG Shaoyang,WANG Zhenkui,et al.Experimental investigation of soil resistance to unburied submarine pipelines with lateral reciprocating motion[J].hebgcdxxb,2016,37(01):76-80.[doi:10.11990/jheu.201410038]
点击复制

裸置海底管道侧向往复运动土抗力试验研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
37
期数:
2016年01期
页码:
76-80
栏目:
出版日期:
2016-01-25

文章信息/Info

Title:
Experimental investigation of soil resistance to unburied submarine pipelines with lateral reciprocating motion
作者:
唐友刚 张少洋 王臻魁 刘成义 刘旭平
天津大学 建筑工程学院 天津大学水利工程仿真与安全国家重点实验室, 天津 300072
Author(s):
TANG Yougang ZHANG Shaoyang WANG Zhenkui LIU Chengyi LIU Xuping
School of Civil Engineering, State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin University, Tianjin 300072, China
关键词:
海底管线侧向屈曲侧向土抗力管土相互作用试验研究土壤隆起高度
分类号:
TE53
DOI:
10.11990/jheu.201410038
文献标志码:
A
摘要:
在高温高压作用下,侧向屈曲是铺设在海床上的海底管道结构失效的主要形式之一,管道在侧向屈曲过程中受到的侧向土抗力是控制管道侧向屈曲幅值的关键因素。针对管道在侧向屈曲过程中受到的侧向土抗力,实施了一系列管道在大位移往复运动过程中的管道土壤相互作用模型试验,研究了不同管道直径和不同初始沉陷深度对侧向土抗力的影响。试验结果表明,侧向土抗力与管道直径、初始沉陷深度有关;侧向土抗力随土壤隆起高度增加呈几何增长;管道在往复运动位移幅值处的侧向土抗力显著增强。

参考文献/References:

[1] 刘润, 闫澍旺, 王洪播, 等. 砂土对埋设管线约束作用的模型试验研究[J]. 岩土工程学报, 2011, 33(4):559-565. LIU Run, YAN Shuwang, WANG Hongbo, et al. Model tests on soil restraint to pipelines buried in sand[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(4):559-565.
[2] KARAL K. Lateral stability of submarine pipelines[C]//Proceedings of 9th Offshore Technology Conference. Houston, Texas, 1977.
[3] WAGNER D A, MURFF J D, BRENNODDEN H, et al. Pipe-soil interaction model[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 1989, 115(2):205-220.
[4] HOBBS R E. In-service buckling of heated pipelines[J]. Journal of Transportation Engineering, 1984, 110(2):175-189.
[5] TAYLOR N, RICHARDSON D, GAN A B. On submarine pipeline frictional characteristics in the presence of buckling[C]//Proceedings of the 4th International Symposium on Offshore Mechanics and Arctic Engineering. Dallas, Texas:ASME, 1985:508-515.
[6] SCHAMINEE P E L, ZORN N F, SCHOTMAN G J M. Soil response for pipeline upheaval buckling analyses:full-scale laboratory tests and modelling[C]//Proceedings of the 22nd Annual Offshore Technology Conference. Houston, Texas, 1990.
[7] DICKIN E A. Uplift resistance of buried pipelines in sand[J]. Soils and Found, 1994, 34(2):41-48.
[8] MORADI M, CRAIG W H. Observation of upheaval buckling of buried pipelines[C]//Proceedings of the Centrifuge. Bogot,Colombia,1998:693-698.
[9] BRANSBY M F, NEWSON T A, BRUNNING P. The upheaval capacity of pipelines in jetted clay backfill[J]. International Journal of Offshore and Polar Engineering, 2002, 12(4):280-287.
[10] PALMER A C, WHITE D J, BAUMGARD A J, et al. Uplift resistance of buried submarine pipelines:comparison between centrifuge modelling and full-scale tests[J]. Géotechnique, 2003, 53(10):877-883.
[11] CHEUK C Y, TAKE W A, BOLTON M D, et al. Soil resistant on buckling oil and gas pipelines buried in lumpy clay fill[J]. Engineering Structures, 2007, 29(6):973-982.
[12] CHEUK C Y, TAKE W A, BOLTON M D, et al. Soil resistant on buckling oil and gas pipelines buried in lumpy clay fill[J]. Engineering Structures, 2007, 29(6):973-982.
[13] ALAM S, ALLOUCHE E N. Experimental investigation of pipe soil friction coefficients for direct buried PVC pipes[C]//Pipeline Division Specialty Conference. Colorado, United States, 2010:1160-1169.
[14] ALAM S, ALLOUCHE E N, BARTLETT C, et al. Experimental evaluation of soil-pipe friction coefficients for coated steel pipes[C]//Pipeline Division Specialty Conference. Texas, United States, 2013:360-371.
[15] ALMAHAKERI M, FAM A, MOORE I D. Experimental investigation of longitudinal bending of buried steel pipes pulled through dense sand[J]. Journal of Pipeline Systems Engineering and Practice, 2014, 5(2):53-64.
[16] WHITE D J, CHEUK C Y. Modelling the soil resistance on seabed pipelines during large cycles of lateral movement[J]. Marine Structures, 2008, 21(1):59-79.
[17] TRAN V. Imperfect upheaval buckling of subsea pipelines[D]. Sheffield, UK:Sheffield Hallam University, 1994.

相似文献/References:

[1]王喆,马洪新,李翔,等.新型喷冲式挖沟机总体设计与结构安全性评估[J].哈尔滨工程大学学报,2015,(05):600.[doi:10.3969/j.issn.1006-7043.201401063]
 WANG Zhe,MA Hongxin,LI Xiang,et al.Evaluation on the overall design and structural safety of a new type of jet trencher for subsea oil pipelines[J].hebgcdxxb,2015,(01):600.[doi:10.3969/j.issn.1006-7043.201401063]
[2]张芝永,刘光生,曾剑.波浪作用下海底管线局部冲刷临界条件[J].哈尔滨工程大学学报,2015,(11):1433.[doi:10.11990/jheu.201406010]
 ZHANG Zhiyong,LIU Guangsheng,ZENG Jian.Critical conditions of local scour below submarine pipelines under wave action[J].hebgcdxxb,2015,(01):1433.[doi:10.11990/jheu.201406010]
[3]赵恩金,拾兵,曹坤.导流板对海底管线涡激振动的影响[J].哈尔滨工程大学学报,2016,37(03):320.[doi:10.11990/jheu.201411081]
 ZHAO Enjin,SHI Bing,CAO Kun.Influence of reflectors on vortex-induced vibration of subsea pipelines[J].hebgcdxxb,2016,37(01):320.[doi:10.11990/jheu.201411081]
[4]程永舟,杨董为,鲁显赫,等.斜向波作用下斜坡海床上管线三维冲刷特性[J].哈尔滨工程大学学报,2018,39(05):863.[doi:10.11990/jheu.201611047]
 CHENG Yongzhou,YANG Dongwei,LU Xianhe,et al.Characteristics of the three-dimensional scour of pipelines on slope seabeds under the action of oblique waves[J].hebgcdxxb,2018,39(01):863.[doi:10.11990/jheu.201611047]
[5]杨少鹏,拾兵.海底管线作用下沙质海床冲刷深度的计算[J].哈尔滨工程大学学报,2018,39(06):984.[doi:10.11990/jheu.201611089]
 YANG Shaopeng,SHI Bing.Calculation of scour depth for submarine pipeline on sandy seabed[J].hebgcdxxb,2018,39(01):984.[doi:10.11990/jheu.201611089]

备注/Memo

备注/Memo:
收稿日期:2014-10-16;改回日期:。
基金项目:国家973计划基金资助项目(2014CB046805).
作者简介:唐友刚(1952-), 男, 教授, 博士生导师.
通讯作者:唐友刚, E-mail: tangyougang_td@163.com.
更新日期/Last Update: 2016-02-04