[1]刘倩,郑洪涛,杨仁,等.介质阻挡放电辅助甲烷蒸汽重整的动力学分析[J].哈尔滨工程大学学报,2014,(10):1294-1300.[doi:10.3969/j.issn.1006-7043.201310005]
 LIU Qian,ZHENG Hongtao,YANG Ren,et al.Kinetic analysis of methane steam reforming assisted by dielectric barrier discharge[J].Journal of Harbin Engineering University,2014,(10):1294-1300.[doi:10.3969/j.issn.1006-7043.201310005]
点击复制

介质阻挡放电辅助甲烷蒸汽重整的动力学分析
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2014年10期
页码:
1294-1300
栏目:
出版日期:
2014-10-25

文章信息/Info

Title:
Kinetic analysis of methane steam reforming assisted by dielectric barrier discharge
作者:
刘倩 郑洪涛 杨仁 陈曦
哈尔滨工程大学 动力与能源工程学院, 哈尔滨 黑龙江 150001
Author(s):
LIU Qian ZHENG Hongtao YANG Ren CHEN Xi
College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
介质阻挡放电甲烷蒸汽重整动力学协同反应化学回热燃气轮机
分类号:
TK47;TP39
DOI:
10.3969/j.issn.1006-7043.201310005
文献标志码:
A
摘要:
为了发展可用于等离子辅助甲烷蒸汽重整的详细反应机理,采用数值模拟和实验研究相结合的方法,系统分析了停留时间、水蒸气/甲烷摩尔比及其反应温度对甲烷转化率和产物产量的影响规律。结合一组实验数据,发展和评估了等离子体辅助甲烷蒸汽重整的详细反应动力学机理。与实验结果对比表明:该动力学机理可以准确预测甲烷转化率及其各产物产量的变化趋势。路径流分析表明CH3基再结合是CH4转化为CO的主要限制步,O基是影响CO生成的关键组分。并列式协同催化实验中有效碳回收率达到100%,该结果初步证实了路径流分析结果的正确性。所做研究明确了等离子体催化甲烷重整的特性,为非平衡等离子体与催化剂协同催化甲烷蒸汽重整的机理研究奠定了基础。

参考文献/References:

[1] CARCSACI C, FACCHINI B, HARVEY S. Modular approach to analysis of chemically recuperated gas turbine cycles[J]. Energy Conversion Management, 1998;39(16/18): 1693-1703.
[2] PAN Fumin, ZHENG Hongtao, LIU Qingzhen,et al. Design and performance calculations of chemically recuperated gas turbine on ship[J]. Proc IMechE Part A: J Power and Energy, 2013, 227(8): 908-918.
[3] HAMMER T, KAPPES T, BALDAUF M. Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes[J]. Catalysis Today, 2004, 89: 5-14.
[4] 颜士鑫, 李晓东, 钟犁, 等. 滑动弧等离子体协助甲烷蒸汽重整制氢[J].太阳能学报, 2011, 32(5): 766-770.YAN Shixin, LI Xiaodong, ZHONG Li, et al. Gliding arc discharge plasma assisted reforming of methane into hydrogen with oxygen and water vapor[J]. Acta Energiae Solaris Sinica, 2011, 32(5): 766-770.
[5] RUSU I, CORMIER J M. On a possible mechanism of the methane steam reforming in a gliding arc reactor[J]. Chemical Engineering Journal, 2003, 91: 23-31.
[6] PETROVI D, MARTENS T, Van DIJK J, et al. Modeling of a dielectric barrier discharge used as a flowing chemical reactor[J]. Journal of Physics: Conference Series, 2008, 133: 1-8.
[7] NAIR S A, NOZAKI T, OKAZAKI K. Methane oxidative conversion pathways in a dielectric barrier discharge reactor-Investigation of gas phase mechanism[J]. Chemical Engineering Journal, 2007, 132: 85-95.
[8] 李洁, 王彧婕, 龙华丽, 等. 强电场中甲烷活化的汤生模型及反应动力学分析[J]. 化学工程, 2007, 35(8): 25-28.LI Jie, WANG Yujie, LONG Hihua, et al. Townsend ionization model and kinetic analysis of methane activated in strong electric field[J]. Chemical Engineering, 2007, 35(8): 25-28.
[9] SUGASAWA M, TERASAWA T, FUTAMURA S. Effects of initial water content on steam reforming of aliphatic hydrocarbons with nonthermal plasma[J]. Journal of Electrostatics, 2010, 68: 212-217.
[10] ZHANG X, WANG B W, LIU Y W, et al. Conversion of methane by steam reforming using dielectric-barrier discharge[J]. Chinese Journal of Chemical Engineering, 2009, 17(4): 625-629.
[11] HIRAOKA K, AOYAMA K, MORISE K. A study of reaction mechanisms of methane in a radio-frequency glow discharge plasma using radical and ion scavengers[J]. Canadina Journal of Chemistry, 1985, 63: 2899-2905.
[12] HAGELAAR G J M, PITCHFORD L C. Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models[J]. Plasma Sci Sources and Tech, 2005, 14: 722.
[13] KEE R J, RUPLEY F M., MEEKS E, et al. CHEMKIN-III: a Fortran chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. SAND96-8216,1996 CHEMKIN-PRO[R]. San Diego: Reaction Design, 2008.
[14] SUN W T, UDDI M, WON S H, et al. Kinetic effects of non-equilibrium plasma-assisted methane oxidation on diffusion flame extinction limits[J]. Combustion and Flame, 2012, 159(1): 221-229.
[15] HAMMER T H, KAPPES T H, BALDAUF M. Plasma catalytic hybrid processes: gas discharge initiation and plasma activation of catalytic processes[J]. Catalysis Today, 2004, 89: 5-14.
[16] JANARDHANAN V M, DEUTSCHMANN O. CFD analysis of a solid oxide fuel cell with internal reforming: coupled interactions of transport, heterogeneous catalysis and electrochemical processes[J]. J Power Sources, 2006, 162 (2): 1192-1202.

备注/Memo

备注/Memo:
收稿日期:2013-10-9;改回日期:。
基金项目:中央高校基本科研业务费专项资金资助项目(HEUCF120303).
作者简介:刘倩(1987-),女,博士研究生;郑洪涛(1962-),男,教授,博士生导师.
通讯作者:郑洪涛,E-mail:zhenghongtao9000@163.com.
更新日期/Last Update: 2015-06-19