[1]王立国,宛宇美,路婷婷,等.结合经验模态分解和Gabor滤波的高光谱图像分类[J].哈尔滨工程大学学报,2016,37(02):284-290.[doi:10.11990/jheu.201411032]
 WANG Liguo,WAN Yumei,LU Tingting,et al.Hyperspectral image classification by combining empirical mode decomposition with Gabor filtering[J].hebgcdxxb,2016,37(02):284-290.[doi:10.11990/jheu.201411032]
点击复制

结合经验模态分解和Gabor滤波的高光谱图像分类(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
37
期数:
2016年02期
页码:
284-290
栏目:
出版日期:
2016-02-25

文章信息/Info

Title:
Hyperspectral image classification by combining empirical mode decomposition with Gabor filtering
作者:
王立国 宛宇美 路婷婷 杨月霜
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
WANG Liguo WAN Yumei LU Tingting YANG Yueshuang
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
高光谱图像图像分类空间信息经验模态分解Gabor滤波
分类号:
TP751
DOI:
10.11990/jheu.201411032
文献标志码:
A
摘要:
针对传统实施于原始数据空间的纹理提取方法的不足,采用经验模态分解理论提取高光谱图像中空间结构明显的固有模态分量,并在提取出的分量上进行Gabor滤波操作,将传统纹理提取方式转移到变换域上进行,提出了一种基于二维经验模态分解融合空间信息的高精度纹理提取算法。对两个数据集进行仿真实验,实验结果表明改进算法有效地提高了高光谱图像分类精度且抗噪性能良好,提出算法性能明显优于传统Gabor-PCA算法,能够更大程度挖掘高光谱图像空间信息。

参考文献/References:

[1] FAUVEL M, BENEDIKTSSON J A, CHANUSSOT J, et al. Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles[J]. IEEE transactions on geoscience and remote sensing, 2008, 46(11): 3804-3814.
[2] CAMPS-VALLS G, GOMEZ-CHOVA L, MUNOZ-MARI J, et al. Composite kernels for hyperspectral image classification[J]. Geoscience and remote sensing letters, 2006, 3(1): 93-97.
[3] TARABALKA Y, BENEDIKTSSON J A, CHANUSSOT J. Spectral-Spatial classification of hyperspectral imagery based on partitional clustering techniques[J]. IEEE transactions on geoscience and remote sensing, 2009, 47(8): 2973-2987.
[4] LI Chaorong, DUAN Guiduo, ZHONG Fujin. Rotation invariant texture retrieval considering the scale dependence of Gabor wavelet[J]. IEEE transactions on image processing, 2015, 24(8): 2344-2354.
[5] 王科俊, 邹国锋. 基于子模式的Gabor特征融合的单样本人脸识别[J]. 模式识别与人工智能, 2013, 26(1): 50-56.WANG Kejun, ZOU Guofeng. A sub-pattern Gabor features fusion method for single sample face recognition[J]. Pattern recognition and artificial intelligence, 2013, 26(1): 50-56.
[6] JIA Sen, SHEN Linlin, DENG Lin. Band selection-based Gabor wavelet feature extraction for hyperspectral imagery classification[C]//Proceedings of the 4th workshop on hyperspectral image and signal processing. Shanghai, China, 2012: 1-4.
[7] HUANG N E, SHEN Zheng, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[C]//Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. London, 1998, 454: 903-995.
[8] 沈毅, 张敏, 张淼. 基于互信息波段选择和经验模态分解的高精度高光谱数据分类[J]. 激光与光电子学进展, 2011, 48(9): 59-66. SHEN Yi, ZHANG Min, ZHANG Miao. Mutual information bands selection and empirical mode decomposition based support vector machines for hyperspectral data high-accuracy classification[J]. Laser and optoelectronics progress, 2011, 48(9): 59-66.
[9] 王立国, 赵妍. 基于MAP的高光谱图像超分辨率方法[J]. 光谱学与光谱分析, 2010, 30(4): 1044-1048. WANG Liguo, ZHAO Yan. MAP based super-resolution method for hyperspectral imagery[J]. Spectroscopy and spectral analysis, 2010, 30(4): 1044-1048.
[10] KUO B C, HO H H, LI C H, et al. A kernel-based feature selection method for SVM with RBF kernel for hyperspectral image classification[J]. IEEE journal of selected topics in applied earth observations and remote sensing, 2014, 7(1): 317-326.
[11] 张学工. 关于统计学习理论与支持向量机[J]. 自动化学报, 2000, 26(1): 32-42. ZHANG Xuegong. Introduction to statistical learning theory and support vector machines[J]. Acta automatica sinica, 2000, 26(1): 32-42.
[12] DEMIR B, ERTURK S. Empirical mode decomposition of hyperspectral images for support vector machine classification[J]. IEEE transactions on geoscience and remote sensing, 2010, 48(11): 4071-4084.
[13] 肖倩. 结合空间信息与光谱信息的高光谱图像分类研究[D]. 哈尔滨: 哈尔滨工程大学, 2013: 35-38. XIAO Qian. Combination of spatial information and spectral information for hyperspectral imagery classification[D]. Harbin: Harbin Engineering University, 2013: 35-38.

相似文献/References:

[1]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2010,(11):0.
 College of Information and Communication Engineering,Harbin Engineering University,Harbin,et al.Anomaly detection algorithm for hyperspectral image by using selective section principal component analysis[J].hebgcdxxb,2010,(02):0.
[2]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2011,(01):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
 ZHAO Chunhui,HU Chunmei,SHI Hong.Anomaly detection for a hyperspectral image by using a selective section principal component analysis algorithm[J].hebgcdxxb,2011,(02):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
[3]刘丹凤,王立国,赵亮.高光谱图像的同步彩色动态显示[J].哈尔滨工程大学学报,2014,(06):760.[doi:10.3969/j.issn.10067043.201306008]
 LIU Danfeng,WANG Liguo,ZHAO Liang.Dynamic display of the hyperspectral image synchronized colors[J].hebgcdxxb,2014,(02):760.[doi:10.3969/j.issn.10067043.201306008]
[4]杨京辉,王立国,钱晋希.基于相关向量机的高光谱图像解混方法[J].哈尔滨工程大学学报,2015,(02):267.[doi:10.3969/j.issn.1006-7043.201311016]
 YANG Jinghui,WANG Liguo,QIAN Jinxi.An unmixing algorithm based on the relevance vector machine for hyperspectral imagery[J].hebgcdxxb,2015,(02):267.[doi:10.3969/j.issn.1006-7043.201311016]
[5]赵春晖,靖晓昊,李威.基于StOMP稀疏方法的高光谱图像目标检测[J].哈尔滨工程大学学报,2015,(07):992.[doi:10.3969/j.issn.1006-7043.201404087]
 ZHAO Chunhui,JING Xiaohao,LI Wei.Hyperspectral image target detection algorithm based on StOMP sparse representation[J].hebgcdxxb,2015,(02):992.[doi:10.3969/j.issn.1006-7043.201404087]
[6]赵春晖,王佳,王玉磊.采用背景抑制和自适应阈值分割的高光谱异常目标检测[J].哈尔滨工程大学学报,2016,37(02):278.[doi:10.11990/jheu.201409035]
 ZHAO Chunhui,WANG Jia,WANG Yulei.Hyperspectral anomaly detection based on background suppression and adaptive threshold segmentation[J].hebgcdxxb,2016,37(02):278.[doi:10.11990/jheu.201409035]
[7]王立国,杨月霜,刘丹凤.基于改进三重训练算法的高光谱图像半监督分类[J].哈尔滨工程大学学报,2016,37(06):849.[doi:10.11990/jheu.201505078]
 WANG Liguo,YANG Yueshuang,LIU Danfeng.Semi-supervised classification for hyperspectral image based on improved tri-training method[J].hebgcdxxb,2016,37(02):849.[doi:10.11990/jheu.201505078]
[8]赵春晖,王鑫鹏,闫奕名.基于密度背景纯化的高光谱异常检测算法[J].哈尔滨工程大学学报,2016,37(12):1722.[doi:10.11990/jheu.201511073]
 ZHAO Chunhui,WANG Xinpeng,YAN Yiming.Density background refinement-based anomaly detection algorithm for hyperspectral images[J].hebgcdxxb,2016,37(02):1722.[doi:10.11990/jheu.201511073]
[9]成宝芝,赵春晖,张丽丽.子空间稀疏表示高光谱异常检测新算法[J].哈尔滨工程大学学报,2017,38(04):640.[doi:10.11990/jheu.201604006]
 CHENG Baozhi,ZHAO Chunhui,ZHANG Lili.An anomaly detection algorithm for hyperspectral images using subspace sparse representation[J].hebgcdxxb,2017,38(02):640.[doi:10.11990/jheu.201604006]
[10]盛振国,王立国.改进的LLGC高光谱图像半监督分类[J].哈尔滨工程大学学报,2017,38(07):1086.[doi:10.11990/jheu.201605023]
 SHENG Zhenguo,WANG Liguo.Semi-supervised classification for hyperspectral images based on improved learning with the LLGC method[J].hebgcdxxb,2017,38(02):1086.[doi:10.11990/jheu.201605023]
[11]刘振林,谷延锋,张晔.一种用于高光谱图像特征提取的子空间核方法[J].哈尔滨工程大学学报,2014,(02):238.[doi:10.3969/j.issn.10067043.201309025]
 LIU Zhenlin,GU Yanfeng,ZHANG Ye.A subspace kernel learning method for feature extraction of the hyperspectral image[J].hebgcdxxb,2014,(02):238.[doi:10.3969/j.issn.10067043.201309025]

备注/Memo

备注/Memo:
收稿日期:2014-11-10;改回日期:。
基金项目:国家自然科学基金资助项目(61275010); 国家教育部博士点基金资助项目(20132304110007); 黑龙江省自然科学基金资助项目(F201409); 中央高校基本科研业务费资助项目(HEUCFD1410).
作者简介:王立国(1974-),男,教授,博士生导师.
通讯作者:王立国,E-mail:wangliguo@hrbeu.edu.cn.
更新日期/Last Update: 2016-03-15