[1]赵宝强,王晓浩,姚宝恒,等.水下滑翔机李雅普诺夫稳定性分析[J].哈尔滨工程大学学报,2015,(01):83-87.[doi:10.3969/j.issn.1006-7043.201309066]
 ZHAO Baoqiang,WANG Xiaohao,YAO Baoheng,et al.Lyapunov stability analysis of the underwater glider[J].hebgcdxxb,2015,(01):83-87.[doi:10.3969/j.issn.1006-7043.201309066]
点击复制

水下滑翔机李雅普诺夫稳定性分析
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年01期
页码:
83-87
栏目:
出版日期:
2015-01-25

文章信息/Info

Title:
Lyapunov stability analysis of the underwater glider
作者:
赵宝强1 王晓浩2 姚宝恒3 连琏3
1. 中国舰船研究设计中心, 湖北 武汉 430064;
2. 清华大学 精密仪器系, 北京 100084;
3. 上海交通大学 船舶与海洋工程国家重点实验室, 上海 200240
Author(s):
ZHAO Baoqiang1 WANG Xiaohao2 YAO Baoheng3 LIAN Lian3
1. China Ship Development and Design Center, Wuhan 430064, China;
2. Department of Precision Instrument, Tsinghua University, Beijing 100084, China;
3. Naval Architecture and Ocean Engineering National Laboratory Shanghai Jiao Tong University, Shanghai 200240, China
关键词:
水下滑翔机运动稳定性李雅普诺夫定理运动控制动力学模型初稳性高直线定常运动螺旋定常运
分类号:
P715.5
DOI:
10.3969/j.issn.1006-7043.201309066
文献标志码:
A
摘要:
水下滑翔机作为一种新型的水下机器人利用了水平固定翼将净重力转换为前进驱动力,从而降低了水下机器人的功耗,在海洋科学研究、环境监测、资源探测和军事侦察等方面都具有广阔的应用前景。为了得到实际水下滑翔机稳定性与设计参数和控制参数之间的关系,将已建立的水下滑翔机一般数学模型应用于具体的实际水下滑翔机上。在此基础上将模型线性化,结合李雅普诺夫稳定性第一定理和第二定理,分析出水下滑翔机定常运动的动态稳定性随设计参数(初稳性高)和控制参数(姿态调节控制量)变化的规律。为水下滑翔机器人的设计和控制提供理论依据。

参考文献/References:

[1] BACHMAYER R,LEONARD N,GRAVER J,et al.Underwater gliders: recent developments and future applications[C]//2004 International Symposium on Underwater Technology.Taipei, Taiwan, 2004:195-200.
[2] DAVIS R E, ERIKSEN C C, JONES C P. Autonomous buoyancy-driven underwater gliders, technology and applications of autonomous underwater vehicles[M].London:Taylor and Francis, 2002:37-58.
[3] STOMMEL H. The slocum mission[J]. Oceanography, 1989, 2 (1): 22-25.
[4] RUDNICK D L R D, RUDNICK D L. Underwater gliders for ocean research[J]. Marine Technology Society Journal, 2004(2):73-84.
[5] BHATTA P. Nonlinear stability and control of gliding vehicles[D]. Princeton:Princeton University, 2004:142-169.
[6] BHATTA P, LEONARD N E. Nonlinear gliding stability and control for vehicles with hydrodynamic for cing[J]. Automatic, 2008, 44(5): 1240-1250.
[7] BHATTA P,LEONARD N E. A lyapunov function for vehicles with lift and drag: stablity of gliding[C]//43rd IEEE Conference on Decision and Control. Atlantis, Paradise Island Maldives, 2004: 4101-4106.
[8] LEONARD N E. Stability of a bottom-heavy underwater vehicle[J]. Automatica, 1997, 33(3): 331-346.
[9] BHATTA P, LEONARD N E. Stabilization and coordination of underwater gliders decision and control[C]//Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, Nevada, USA, 2002: 2081-2086.
[10] WU Jianguo. System design and performance analysis of hybrid-driven underwater glider[D]. Tianjin: Tianjin University, 2010:56-87.
[11] GRAVER J G, LEONARD N E. Underwater glider dynamics and control[C]//12th International Symposium on Unmanned Untethered Submersible Technology.Durham,New Hampshire USA, 2001: 1742-1710.
[12] SASTRY S. Lyapunov Stability Theory[M].New York:Nonlinear Systems, 1999: 182-234.

相似文献/References:

[1]赵志刚,王砚麟,李劲松.多机器人协调吊运系统力位姿混合运动稳定性评价方法[J].哈尔滨工程大学学报,2018,39(01):148.[doi:10.11990/jheu.201608034]
 ZHAO Zhigang,WANG Yanlin,LI Jinsong.Appraise of dynamical stability of multi-robots cooperatively lifting system based on hybrid force-position-pose approach[J].hebgcdxxb,2018,39(01):148.[doi:10.11990/jheu.201608034]
[2]于鹏垚,王天霖,甄春博,等.水下滑翔机的稳态运动速度分析[J].哈尔滨工程大学学报,2018,39(11):1767.[doi:10.11990/jheu.201705030]
 YU Pengyao,WANG Tianlin,ZHEN Chunbo,et al.Analysis of the steady-state motion velocity of an underwater glider[J].hebgcdxxb,2018,39(01):1767.[doi:10.11990/jheu.201705030]

备注/Memo

备注/Memo:
收稿日期:2013-9-21;改回日期:。
基金项目:国家科技重大专项基金资助项目(2011ZX05027);国家自然科学基金资助项目(51279107);上海市科研计划基金资助项目(13dz1204600).
作者简介:赵宝强(1990-),男,硕士研究生;连琏(1962-),女,教授,博士生导师.
通讯作者:连琏,E-mail:lianlian@sjtu.edu.cn.
更新日期/Last Update: 2015-06-16