[1]赵春晖,靖晓昊,李威.基于StOMP稀疏方法的高光谱图像目标检测[J].哈尔滨工程大学学报,2015,(07):992-996.[doi:10.3969/j.issn.1006-7043.201404087]
 ZHAO Chunhui,JING Xiaohao,LI Wei.Hyperspectral image target detection algorithm based on StOMP sparse representation[J].hebgcdxxb,2015,(07):992-996.[doi:10.3969/j.issn.1006-7043.201404087]
点击复制

基于StOMP稀疏方法的高光谱图像目标检测(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年07期
页码:
992-996
栏目:
出版日期:
2015-07-25

文章信息/Info

Title:
Hyperspectral image target detection algorithm based on StOMP sparse representation
作者:
赵春晖 靖晓昊 李威
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
ZHAO Chunhui JING Xiaohao LI Wei
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
高光谱图像目标检测稀疏表示StOMP算法快速运算
分类号:
TP751.1
DOI:
10.3969/j.issn.1006-7043.201404087
文献标志码:
A
摘要:
稀疏表示方法已经被成功应用于高光谱图像目标检测领域,并且取得了较好的检测效果,但由于高光谱图像往往具有很大的数据量,传统的稀疏检测算法计算成本很高。针对这种情况,提出了应用StOMP算法的高光谱图像稀疏目标检测算法,对求解稀疏系数的步骤进行了改进,减少了此过程中的迭代次数,大幅度降低了运算量,提高了检测速度。使用了2组数据进行仿真实验,结果表明,StOMP算法的应用有效地提高了检测速度与检测精度。

参考文献/References:

[1] 王立国,赵春晖.高光谱图像处理技术[M].北京:国防工业出版社,2013.
[2] MATTEOLI S, DIANI M, CORSINI G. A tutorial overview of anomaly detection in hyperspectral images [J]. IEEE A&E Systems Magazine, 2010, 25(7): 5-27.
[3] DATT B, MCVICAR T R, Van NIEL T G, et al. Preprocessing EO-1 Hyperion hyperspectral data to support the application of agricultural indexes [J]. IEEE T Geosci Remote, 2003, 41(6):1246-1259.
[4] ZHAO Chunhui, LI Xiaohui, REN Jinchang, et al. Improved sparse representation using adaptive spatial support for effective target detection in hyperspectral imagery [J]. International Journal of Remote Sensing, 2013,34(24):8669-8684.
[5] BANERJEE A, BURLINA P, DIEHL C. A support vector method for anomaly detection in hyperspectral imagery [J]. IEEE T GEOSCI REMOTE, 2006, 44(8):2282-2291.
[6] KRAUT S, SCHARF L L. Adaptive subspace detectors [J]. IEEE T Signal Proces, 2001, 49(1):1-16.
[7] 赵春晖,成宝芝,杨伟超.利用约束非负矩阵分解的高光谱解混算法[J]. 哈尔滨工程大学学报, 2012, 33 (3): 377-382.ZHAO Chunhui, CHENG Baozhi, YANG Weichao.Algorithm for hyperspectral unmixing using constrained nonnegative matrix factorization [J]. Journal of Harbin Engineering University, 2012, 3(33): 377-382.
[8] MANOLAKIS D, SHAW G. Detection algorithms for hyperspectral imaging applications[J]. IEEE Signal Processing Magazine, 2002, 19(1): 29-43.
[9] 赵春晖, 李杰, 梅峰. 核加权RX高光谱图像异常检测算法[J]. 红外与毫米波学报, 2010, 29(5): 378-382.ZHAO Chunhui, LI Jie, MEI Feng. A kernel weighted RX algorithm for anomaly detection in hyperspectral imagery [J]. J Infrared Millim Waves, 2010, 29(5): 378-382.
[10] CHEN Y, NASRABADI N M, TRAN T D. Hyperspectral image classification using dictionary-based sparse representation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(10): 3973-3985.
[11] DONOHO D L, TSAIG Y, DRORI I, et al. Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit [J]. IEEE Transactions on Information Theory, 2012, 58(2): 1094-1121.
[12] 宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报, 2012, 34(2): 268-272.SONG Xiangfa, JIAO Licheng. Classification of hyperspectral remote sensing image based on sparse representation and spectral Information [J]. Journal of Electronics & Information Technology, 2012, 34(2): 268-272.
[13] CHEN Y, NASRABADI N M, TRAN T D. Sparse representation for target detection in hyperspectral imagery [J]. IEEE J Sel Top Quant, 2011, 5(3):629-634.
[14] PAT Y C,REZAIIFA R, KRISHNAPRAS P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[C]//Proceedings of the 27th Annual Asilomar Conference on Signals, Systems, and Computers, Signals, Systems and Computers. Los Alamitos, USA, 1993: 40-44.
[15] 赵春晖, 李晓慧, 朱海峰. 空间4-邻域稀疏表示的高光谱图像目标检测[J]. 哈尔滨工程大学学报, 2013, 34(9): 1-8.ZHAO Chunhui, LI Xiaohui, ZHU Haifeng.Hyperspectral imaging target detection algorithm based on spatial 4 neighborhood for sparse representation [J].Journal of Harbin Engineering University, 2013, 34(9): 1-8.

相似文献/References:

[1]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2010,(11):0.
 College of Information and Communication Engineering,Harbin Engineering University,Harbin,et al.Anomaly detection algorithm for hyperspectral image by using selective section principal component analysis[J].hebgcdxxb,2010,(07):0.
[2]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2011,(01):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
 ZHAO Chunhui,HU Chunmei,SHI Hong.Anomaly detection for a hyperspectral image by using a selective section principal component analysis algorithm[J].hebgcdxxb,2011,(07):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
[3]万磊,曾文静,张铁栋,等.近海岸目标快速提取[J].哈尔滨工程大学学报,2012,(09):1158.[doi:10.3969/j.issn.1006-7043.201110043]
 WAN Lei,ZENG Wenjing,ZHANG Tiedong,et al.Fast extraction of offshore targets based on sea line detection[J].hebgcdxxb,2012,(07):1158.[doi:10.3969/j.issn.1006-7043.201110043]
[4]赵春晖,李晓慧,朱海峰.空间4邻域稀疏表示的高光谱图像目标检测 [J].哈尔滨工程大学学报,2013,(09):1152.[doi:10.3969/j.issn.1006-7043. 201207005]
[5]刘振林,谷延锋,张晔.一种用于高光谱图像特征提取的子空间核方法[J].哈尔滨工程大学学报,2014,(02):238.[doi:10.3969/j.issn.10067043.201309025]
 LIU Zhenlin,GU Yanfeng,ZHANG Ye.A subspace kernel learning method for feature extraction of the hyperspectral image[J].hebgcdxxb,2014,(07):238.[doi:10.3969/j.issn.10067043.201309025]
[6]刘丹凤,王立国,赵亮.高光谱图像的同步彩色动态显示[J].哈尔滨工程大学学报,2014,(06):760.[doi:10.3969/j.issn.10067043.201306008]
 LIU Danfeng,WANG Liguo,ZHAO Liang.Dynamic display of the hyperspectral image synchronized colors[J].hebgcdxxb,2014,(07):760.[doi:10.3969/j.issn.10067043.201306008]
[7]杨京辉,王立国,钱晋希.基于相关向量机的高光谱图像解混方法[J].哈尔滨工程大学学报,2015,(02):267.[doi:10.3969/j.issn.1006-7043.201311016]
 YANG Jinghui,WANG Liguo,QIAN Jinxi.An unmixing algorithm based on the relevance vector machine for hyperspectral imagery[J].hebgcdxxb,2015,(07):267.[doi:10.3969/j.issn.1006-7043.201311016]
[8]赵春晖,王佳,王玉磊.采用背景抑制和自适应阈值分割的高光谱异常目标检测[J].哈尔滨工程大学学报,2016,37(02):278.[doi:10.11990/jheu.201409035]
 ZHAO Chunhui,WANG Jia,WANG Yulei.Hyperspectral anomaly detection based on background suppression and adaptive threshold segmentation[J].hebgcdxxb,2016,37(07):278.[doi:10.11990/jheu.201409035]
[9]王立国,宛宇美,路婷婷,等.结合经验模态分解和Gabor滤波的高光谱图像分类[J].哈尔滨工程大学学报,2016,37(02):284.[doi:10.11990/jheu.201411032]
 WANG Liguo,WAN Yumei,LU Tingting,et al.Hyperspectral image classification by combining empirical mode decomposition with Gabor filtering[J].hebgcdxxb,2016,37(07):284.[doi:10.11990/jheu.201411032]
[10]王立国,杨月霜,刘丹凤.基于改进三重训练算法的高光谱图像半监督分类[J].哈尔滨工程大学学报,2016,37(06):849.[doi:10.11990/jheu.201505078]
 WANG Liguo,YANG Yueshuang,LIU Danfeng.Semi-supervised classification for hyperspectral image based on improved tri-training method[J].hebgcdxxb,2016,37(07):849.[doi:10.11990/jheu.201505078]
[11]赵春晖,孟美玲,闫奕名.基于字典重构的高光谱图像亚像元目标检测[J].哈尔滨工程大学学报,2018,39(09):1582.[doi:10.11990/jheu.201707008]
 ZHAO Chunhui,MENG Meiling,YAN Yiming.Sub-pixel target detection on hyperspectral image based on dictionary reconstruction[J].hebgcdxxb,2018,39(07):1582.[doi:10.11990/jheu.201707008]

备注/Memo

备注/Memo:
收稿日期:2014-4-30;改回日期:。
基金项目:国家自然科学基金资助项目(61405041);黑龙江省自然科学基金重点资助项目(ZD201216);哈尔滨市优秀学科带头人基金资助项目(RC2013XK009003).
作者简介:赵春晖(1965-),男, 教授,博士生导师.
通讯作者:赵春晖, E-mail:zhaochunhui@hrbeu.edu.cn.
更新日期/Last Update: 2015-07-29