[1]张满慧,胡逢源,胡胜海,等.空间变胞机构运动及误差的全构态四元数模型[J].哈尔滨工程大学学报,2015,(09):1252-1258.[doi:10.11990/jheu.201406068]
 ZHANG Manhui,HU Fengyuan,HU Shenghai,et al.Kinematics and error modeling based on configuration-complete quaternion for spatial metamorphic mechanisms[J].hebgcdxxb,2015,(09):1252-1258.[doi:10.11990/jheu.201406068]
点击复制

空间变胞机构运动及误差的全构态四元数模型(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
期数:
2015年09期
页码:
1252-1258
栏目:
出版日期:
2015-09-25

文章信息/Info

Title:
Kinematics and error modeling based on configuration-complete quaternion for spatial metamorphic mechanisms
作者:
张满慧1 胡逢源2 胡胜海1 张保平1 谢婷婷1
1. 哈尔滨工程大学机电工程学院, 黑龙江 哈尔滨 150001;
2. 上海船舶设备研究所, 上海 200031
Author(s):
ZHANG Manhui1 HU Fengyuan2 HU Shenghai1 ZHANG Baoping1 XIE Tingting1
1. College of Mechanical and Electrical Engineering, Harbin Engineering University, Harbin 150001, China;
2. Shanghai institute of ship equipments, Shanghai 200031, China
关键词:
空间变胞机构四元数全构态运动运动误差间隙
分类号:
TH112
DOI:
10.11990/jheu.201406068
文献标志码:
A
摘要:
空间变胞机构的拓扑结构可变特性使得建立全构态模型是其运动及误差研究的一个难题,而现有欧拉参数运动模型中存在数学奇异和非奇异退化等问题,因此提出了采用罗德里格-哈密顿参数建立空间变胞机构的全构态模型。基于四元数理论建立了任意构态的运动模型,推导了相邻构态广义运动变量的递推关系。研究了结构误差、运动变量误差及运动副间隙对理想模型的扰动,构建了统一的范式表示机构的全构态四元数模型。通过典型实例的理论计算和仿真分析对比结果表明,所建模型的有效性,它既可分析空间变胞机构的全构态运动特性,也可研究构态变换前后的运动特性变化,为变胞机构的工程应用提供了理论基础。

参考文献/References:

[1] DAI Jiansheng, ZHANG Qixian. Metamorphic mechanisms and their configuration models[J]. Chinese Journal of Mechanical Engineering, 2000, 13(3):212-218.
[2] 李端玲, 张忠海, 戴建生, 等. 变胞机构的研究综述与展望[J]. 机械工程学报, 2010, 46(13):14-21. LI Duanling, ZHANG Zhonghai, DAI Jiansheng, et al. Overview and prospects of metamorphic mechanism[J]. Chinese Journal of Mechanical Engineering, 2010, 46(13):14-21.
[3] LI Duanling, SUN Hanxu, JIA Qingxuan, et al. Kinematic analysis and simulation of metamorphic mechanisms[C]//Proceedings of the 11th World Congress in Mechanism and Machine Science. Beijing, China, 2004:1289-1294.
[4] DAI Jiansheng, REES J J. Kinematics and mobility analysis of carton folds in packing manipulation based on the mechanism equivalent[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2002, 216(10):959-970.
[5] 金国光. 变胞机构结构学、运动学及动力学研究[R]. 北京:北京航天航空大学, 2003:50-52. JIN Guoguang. Research on structure theory, kinematics and dynamics of metamorphic mechanisms[R]. Beijing:Beijing University of Aeronautics and Astronautics, 2003:50-52.
[6] 吴艳荣, 金国光, 李东福. 变胞机构的构态分析及其运动学仿真研究[J]. 机械科学与技术, 2006, 25(9):1092-1095. WU Yanrong, JIN Guoguang, LI Dongfu. Research on configuration analysis and kinematic simulation of metamorphic mechanisms[J]. Mechanical Science and Technology, 2006, 25(9):1092-1095.
[7] 杨毅, 丁希仑, 吕胜男, 等. 基于有限元的平面变胞机构运动学研究[J]. 航空学报, 2010, 31(12):2425-2434. YANG Yi, DING Xilun, LYU Shengnan, et al. Kinematic study of planar metamorphic mechanism based on finite elements[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12):2425-2434.
[8] 侯少毅, 秦伟, 郭兴辉. 基于影响系数法的变胞机构运动分析[J]. 机床与液压, 2008, 36(4):296-298, 374. HOU Shaoyi, QIN Wei, GUO Xinghui. Kinematic analysis of metamorphic mechanisms based on influence coefficient method[J]. Machine Tool and Hydraulics, 2008, 36(4):296-298, 374.
[9] 胡胜海, 张校东, 李林, 等. 复杂曲面切割机构运动及误差分析的旋量方法[J]. 北京工业大学学报, 2013, 39(3):346-352. HU Shenghai, ZHANG Xiaodong, LI Lin, et al. Kinematics and errors analysis of cutting machine for complex-surface using screw theory[J]. Journal of Beijing University of Technology, 2013, 39(3):346-352.
[10] 肖尚彬. 四元数方法及其应用[J]. 力学进展, 1993, 23(2):249-260. XIAO Shangbin. The method of quaternion and its application[J]. Advances in Mechanics, 1993, 23(2):249-260.
[11] 甘东明. 空间机构的运动学分析及新型并联变胞机构的设计[D]. 北京:北京邮电大学, 2009:18-24. GAN Dongming. Kinematics of spatial mechanisms and innovative design of metamorphic parallel mechanisms[D]. Beijing:Beijing University of Posts and Telecommunications, 2009:18-24.
[12] 戴建生, 丁希仑, 邹慧君. 变胞原理和变胞机构类型[J]. 机械工程学报, 2005, 41(6):7-12. DAI Jiansheng, DING Xilun, ZOU Huijun. Fundamentals and categorization of metamorphic mechanisms[J]. Chinese Journal of Mechanical Engineering, 2005, 41(6):7-12.
[13] DAI Jiansheng, REES J J. Matrix representation of topological changes in metamorphic mechanisms[J]. Transactions of ASME, Journal of Mechanical Design, 2005, 127(4):837-840.
[14] ZHANG Wuxiang, DING Xilun, DAI Jiansheng. Design and stability of operating mechanism for a spacecraft hatch[J]. Chinese Journal of Aeronautics, 2009, 22(4):453-458.
[15] 丁希仑, 周乐来, 周军. 机器人的空间位姿误差分析方法[J]. 北京航天航空大学学报, 2009, 35(2):241-245. DING Xilun, ZHOU Lelai, ZHOU Jun. Pose error analysis of robot in three dimension[J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(2):241-245.
[16] 徐卫良. 机器人机构误差建模的摄动法[J]. 机器人, 1989, 3(6):39-44. XU Weiliang. A perturbation approach to error modeling of robot likage[J]. Robots, 1989, 3(6):39-44.

备注/Memo

备注/Memo:
收稿日期:2014-06-23;改回日期:。
基金项目:国家自然科学基金资助项目(51175099).
作者简介:张满慧(1991-),男,博士研究生;胡胜海(1954-),男,教授,博士生导师.
通讯作者:张满慧,E-mail:zhangmanhui@hrbeu.edu.cn
更新日期/Last Update: 2015-10-28