[1]凌静秀,孙伟,杨晓静,等.复杂应力状态下TBM刀盘裂纹应力强度因子分析[J].哈尔滨工程大学学报,2017,38(04):633-639.[doi:10.11990/jheu.201603104]
 LING Jingxiu,SUN Wei,YANG Xiaojing,et al.Analysis of stress intensity factors for a TBM cutter head crack in complex stress states[J].hebgcdxxb,2017,38(04):633-639.[doi:10.11990/jheu.201603104]
点击复制

复杂应力状态下TBM刀盘裂纹应力强度因子分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年04期
页码:
633-639
栏目:
出版日期:
2017-04-25

文章信息/Info

Title:
Analysis of stress intensity factors for a TBM cutter head crack in complex stress states
作者:
凌静秀1 孙伟2 杨晓静1 练国富1 江吉彬1
1. 福建工程学院 机械与汽车工程学院, 福建 福州 350118;
2. 大连理工大学 机械工程学院, 辽宁 大连 116024
Author(s):
LING Jingxiu1 SUN Wei2 YANG Xiaojing1 LIAN Guofu1 JIANG Jibin1
1. School of Mechanical and Automotive Engineering, Fujian University of Technology, Fuzhou 350118, China;
2. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
关键词:
TBM刀盘应力强度因子裂纹复杂应力状态子模型技术裂纹形状比疲劳寿命
分类号:
TH113.1
DOI:
10.11990/jheu.201603104
文献标志码:
A
摘要:
为了预测全断面岩石掘进机(tunnel boring machine,TBM)刀盘的疲劳寿命,本文对其裂纹尖端的应力强度因子进行了研究。以某水利工程的刀盘为研究对象,采用基于子模型技术的有限元法分析复杂应力状态下刀盘裂纹的应力强度因子,并给出了不同裂纹参数对应力强度因子的影响规律,为刀盘裂纹扩展寿命的预测提供输入条件。分析表明,当裂纹位置角为45°或135°时,裂纹尖端的等效应力强度因子最大,对结构损伤最严重;形状比对KI值影响最显著,形状比越大,尖端KI值相差越大,在深度方向的扩展趋势也越强;KIKK值均随裂纹深度的增加而增大,裂纹尖端最深处以张开型扩展形式为主,而表面点则是3种开裂形式并存。

参考文献/References:

[1] 陈树进,刘志华,齐鹏,等.TBM刀盘整修技术[J].建筑机械, 2012(6):118-120.CHEN Shujin, LIU Zhihua, QI Peng, et al. The rebuilding technology of TBM cutter head[J]. Construction machinery, 2012(6):118-120.
[2] 黄文鹏.节理密集带地质硬岩TBM刀盘损坏形式及对策[J].隧道建设,2012,32(4):587-593.HUANG Wenpeng. Study on damage of hard rock TBM induced by tunneling through joint-densely-developed hard rock section and countermeasures[J]. Tunnel construction, 2012, 32(4):587-593.
[3] 齐梦学, 李宏亮, 王雁军. 全断面硬岩掘进机全面整修技术研究与应用[J]. 建设机械技术与管理, 2009(3):97-102.QI Mengxue, LI Hongliang, WANG Yanjun. Research and application of refit technology of all-section rock tunnel boring machine[J]. Construction machinery technology & management, 2009, (3):97-102.
[4] ACAROGLU O, OZDEMIR L, ASBURY B. A fuzzy logic model to predict specific energy requirement for TBM performance prediction[J]. Tunnelling and underground space technology, 2008, 23:600-608.
[5] HASSANPOUR J, ROSTAMI J, ZHAO J. A new hard rock TBM performance prediction model for project planning[J]. Tunnelling and underground space technology, 2011, 26:595-603.
[6] GONG Q M, ZHAO J, HEFNY A M. Numerical simulation of rock fragmentatin process induced by two TBM cutters and cutter spacing optimization[J]. Tunnelling and underground space technology, 2006, 21:263
[7] XIA Yimin, OUYANG Tao, ZHANG Xinming, et al. Mechanical model of breaking rock and force characteristic of disc cutter[J]. Journal of central south university, 2012, 19:1846-1852.
[8] 夏毅敏, 陈卓, 林赉贶,等. 某供水工程TBM刀盘破岩过程动静态响应特性[J]. 哈尔滨工程大学学报, 2016, 37(5):732-737.XIA Yimin, CHEN Zhuo, LIN Laikuang, et al. Static and dynamic response characteristics of TBM cutterhead’s rock-breaking process:case study of a diversion project[J]. Journal of Harbin Engineering University, 2016, 37(5):732-737.
[9] HUO Junzhou, SUN Wei, CHEN Jing, et al. Disc cutters plane layout design of the full-face rock tunnel boring machine (TBM)based on different layout patterns[J]. Computers & industrial engineering, 2011, 61:1209-1225.
[10] SUN Wei, LING Jing, HUO Junzhou, et al. Study of TBM cutterhead fatigue damage mechanisms based on a segmented comprehensive failure criterion[J]. Engineering failure analysis, 2015, 58:64-82.
[11] HUO Junzhou, WU Hanyang, YANG Jing, et al. Multi-directional coupling dynamic characteristics analysis of TBM cutterhead system based on tunnelling field test[J]. Journal of mechanical science and technology, 2015, 29(8):3043-3058.
[12] SUN Wei, LING Jingxiu, HUO Junzhou, et al. Dynamic characteristics study with multidegree-of-freedom coupling in TBM cutterhead system based on complex factors[J]. Mathematical problems in engineering, 2013, 2013(3):657-675.
[13] 张朋, 田佳林, 韩鲁佳. 基于非结构混合网格人椅系统外流场数值模拟[J]. 应用科技, 2015, 42(5):42-45.ZHANG Peng, TIAN Jialin, HAN Lujia. Numerical simulation of the flow fields around the aircraft ejection seat system based on unstructured hybrid grids[J]. Applied science and technology, 2015, 42(5):42-45.
[14] MASAKI M, HIROYUKI M, NORITAKE O, et al. Calculation of dynamic stress intensity factors for pipes during crack propagation by dynamic finite element analysis[J]. Journal of pressure vessel technology, 2014, 136(1):1-8.
[15] LIN X B, SMITH R A. Finite element modeling of fatigue crack growth of surface cracked plates-Part I:the numerical technique[J]. Engineering fracture mechanics, 1999, 63(5):503-522.
[16] LIN X B, SMITH R A. Finite element modeling of fatigue crack growth of surface cracked plates-Part Ⅲ:Stress intensity factor and fatigue crack growth life[J]. Engineering fracture mechanics, 1999, 63(5):541-556.
[17] CHRISTOPHER R S. Uncertainty quantification in crack growth modeling under multi-axial variable amplitude loading[D]. Nashville:Vanderbilt University, 2010:127-129.
[18] DIAMANTAKOS I D, LABEAS G N, PANTELAKIS S G, et al. A model to assess the fatigue behavior of ageing aircraft fuselage[J]. Fatigue fract engng mater struct, 2001, 24(10):677-686
[19] LING Jing, SUN Wei, HUO Junzhou, et al. Study of TBM cutterhead fatigue crack propagation life based on multi-degree of freedom coupling system dynamics[J]. Computers & industrial engineering, 2015, 83:1-14.

相似文献/References:

[1]马有理,黎庆,林晶.倾斜疲劳裂纹在混合型应力下张开及滑移特性[J].哈尔滨工程大学学报,2009,(03):271.
 MA You-li,LI Qin9,LIN Jin9.Opening and sliding displacement behavior of a slant angle fatigue crack under mixed-mode conditions[J].hebgcdxxb,2009,(04):271.
[2]陈景杰,黄一,刘刚.平板穿透裂纹尖端应力强度因子计算方法研究[J].哈尔滨工程大学学报,2011,(01):129.[doi:doi:10.3969/j.issn.1006-7043.2011.01.024]
 CHEN Jingjie,HUANG Yi,LIU Gang.Research on calculation of stress intensity factors in a cracked plate[J].hebgcdxxb,2011,(04):129.[doi:doi:10.3969/j.issn.1006-7043.2011.01.024]
[3]李庆芬,齐桂营,朱莉,等.MCTS试件的三维有限元计算断裂分析[J].哈尔滨工程大学学报,2011,(09):1157.[doi:doi:10.3969/j.issn.1006-7043.2011.09.011]
 LI Qingfen,QI Guiying,ZHU Li,et al.3D finite element computational fracture analysis of an MCTS specimen[J].hebgcdxxb,2011,(04):1157.[doi:doi:10.3969/j.issn.1006-7043.2011.09.011]
[4]马有理.油气输送管道疲劳裂纹起裂特性与影响因素[J].哈尔滨工程大学学报,2012,(08):984.[doi:10 3969/j.issn.1006-7043.201108008]
 MA Youli.Initial fracture behavior and influencing factors of fatigue cracks in an oil-gas pipeline[J].hebgcdxxb,2012,(04):984.[doi:10 3969/j.issn.1006-7043.201108008]
[5]王建明,刘伟,吕鹤婷.复合型裂纹的扩展路径模拟及疲劳寿命预测[J].哈尔滨工程大学学报,2015,(08):1086.[doi:10.3969/j.issn.1006-7043.201401056]
 WANG Jianming,LIU Wei,LYU Heting.Numerical simulation of crack propagation path and fatigue life prediction for mixed mode cracks[J].hebgcdxxb,2015,(04):1086.[doi:10.3969/j.issn.1006-7043.201401056]
[6]韩美东,曲传咏,蔡宗熙,等.刀盘掘进过程动态仿真[J].哈尔滨工程大学学报,2015,(08):1098.[doi:10.3969/j.issn.1006-7043.201404053]
 HAN Meidong,QU Chuanyong,CAI Zongxi,et al.Dynamic numerical simulation of tunneling by the TBM cutter head[J].hebgcdxxb,2015,(04):1098.[doi:10.3969/j.issn.1006-7043.201404053]
[7]霍军周,李广庆,吴瀚洋,等.TBM刀盘缩尺试验台设计及其静动态特性分析[J].哈尔滨工程大学学报,2016,37(05):713.[doi:10.11990/jheu.201412001]
 HUO Junzhou,LI Guangqing,WU Hanyang,et al.Design of a TBM cutterhead reduced-scale test bench and its static/dynamic characteristics analysis[J].hebgcdxxb,2016,37(04):713.[doi:10.11990/jheu.201412001]
[8]夏毅敏,陈卓,林赉贶,等.某供水工程TBM刀盘破岩过程动静态响应特性[J].哈尔滨工程大学学报,2016,37(05):732.[doi:10.11990/jheu.201501048]
 XIA Yimin,CHEN Zhuo,LIN Laikuang,et al.Static and dynamic response characteristics of a TBM cutterhead’s rock-breaking process: a case study of a diversion project[J].hebgcdxxb,2016,37(04):732.[doi:10.11990/jheu.201501048]
[9]赵洪波,王启智.孔隙水吸(压)力对非常早期混凝土裂纹扩展的影响[J].哈尔滨工程大学学报,2018,39(05):902.[doi:10.11990/jheu.201611035]
 ZHAO Hongbo,WANG Qizhi.Crack propagation in concrete at very early ages roles of pore moisture suction (pressure)[J].hebgcdxxb,2018,39(04):902.[doi:10.11990/jheu.201611035]

备注/Memo

备注/Memo:
收稿日期:2016-3-30。
基金项目:国家重点研究发展计划(2013CB035402);福建省自然科学基金项目(2015J01181);2014年福建省产业技术联合创新专项资助项目(闽发改高[514]号)
作者简介:凌静秀(1985-),男,博士,讲师.
通讯作者:凌静秀,E-mail:ljxyxj@fjut.edu.cn.
更新日期/Last Update: 2017-05-09