参考文献/References:
[1] REED I S,YU X. Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution[J]. IEEE transactions on acoustics, speech and signal processing, 1990, 38(10):1760-1770.
[2] STEFANIA M, TIZIANA V, MARCO D, et al. A locally adaptive background density estimator:an evolution for rx-based anomaly detectors[J].IEEE geoscience and remote sensing letters, 2014, 11(1):323-327.
[3] KWON H,NASRABAD N M. Kernel RX-algorithm:a nonlinear anomaly detector for hyperspectral imagery[J]. IEEE transactions on geoscience and remote sensing, 2005, 43(2):388-397.
[4] BANERJEE A,BURLINA P,DIEHI C. A support vector method for anomaly detection in hyperspectral imagery[J]. IEEE transactions on geoscience and remote sensing, 2006, 44(8):2282-2291.
[5] 谌德荣,宫久路,何光林,等. 高光谱图像全局异常检测RFS-SVDD算法[J].宇航学报, 2010, 31(1):228-232.CHEN Derong, GONG Jiulu, HE Guanglin, et al. A RFS-SVDD algorithm for hyperspectral global anomaly detection[J]. Jouroal of astronautics, 2010, 31(1):228-232.
[6] 成宝芝,赵春晖. 基于粒子群优化聚类的高光谱图像异常目标检测[J]. 光电子·激光, 2013, 24(10):2047-2054.CHENG Baozhi, ZHAO Chunhui. A particle swarm optimization clustering-based approach for hyperspectral anomaly targets detection[J].Journal of optoelectronics laser, 2013, 24(10):2047-2054.
[7] KHAZAI S,HOMAYOUNI S,SAFARI A. Anomaly detection in hyperspectral images based on an adaptive support vector method[J]. IEEE geoscience and remote sensing letters,2011, 8(4):646-650.
[8] YUAN Zongze, SUN Hao, FENG J K, et al. Local sparsity divergence for hyperspectral anomaly detection[J]. IEEE geoscience and remote sensing letters, 2014, 11(10):1697-1701.
[9] 张丽丽,赵春晖,成宝芝.基于联合核协同的高光谱图像异常目标检测[J].光电子.激光, 2015(11):2154-2161.ZHANG Lili,ZHAO Chunhui,CHENG Baozhi. A joint kernel collaborative representation based approach for hyperspe-ctral image anomaly target detection[J]. Journal of optoelectronics·laser, 2015(11):2154-2161.
[10] 赵春晖,靖晓昊,李威. 基于StOMP稀疏方法的高光谱图像目标检测[J].哈尔滨工程大学学报, 2015, 36(7):992-996.ZHAO Chunhui, JING Xiaohao, LI Wei. Hyperspectral imagery target detection algorithm based on StOMP sparse representation[J].Journal of Harbin Engineering University, 2015, 36(7):992-996.
[11] 赵春晖, 李晓慧, 朱海峰. 空间4-邻域稀疏表示的高光谱图像目标检测[J]. 哈尔滨工程大学学报, 2013, 34(9):1-8.ZHAO Chunhui, LI Xiaohui, ZHU Haifeng. Hyperspectral imaging target detection algorithm based on spatial 4 neighborhood for sparse representation[J]. Journal of Harbin Engineering University, 2013, 34(9):1-8.
[12] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum, 1981.
[13] PAL N R, PAL K, KELLER J M, et al. A possibilistic fuzzy c-means clustering algorithm[J]. IEEE transactions on fuzzy systems, 2005,13(4):517-530.
[14] 陈曦,李春月,李峰,等. 基于PSO的模糊C-均值聚类算法的图像分割[J].计算机工程与应用, 2008, 44(18):181-182.CHEN Xi, LI Chunyue, LI Feng, et al. Image segmentati-on based on pso and fuzzy C-means clustering algorithm[J]. Computer engineering and applications, 2008, 44(18):181-182.
[15] KENNEDY J, EBERHART R C. Particle swarm optimization[C]//IEEE International Conference on Neural Networks, 1995:1942-1948.
[16] PAOLI M, MELGANI F. Clustering of hyperspectral image based on multiobjective particle swarm optimization[J]. IEEE transactions on geoscience and remote sensing, 2009, 47(12):4175-4178.
[17] TAHER N, BABAK A. An efficient hybrid approach based on PSO,ACO and k-means for cluster analysis[J]. Applied soft computing, 2010, 10(1):183-197.
[18] 吕奕清, 林锦贤. 基于MPI的并行PSO混合K均值聚类算法[J].计算机应用, 2011, 31(2):428-431.LV Yiqing, LIN Jinxian. Parallel PSO combined with K-means clustering algorithm based on MPI[J]. Journal of computer applications, 2011, 31(2):428-431.
[19] 宋相法,焦李成.基于稀疏表示及光谱信息的高光谱遥感图像分类[J].电子与信息学报, 2012, 34(2):268-272.SONG Xiangfa, JIAO Licheng. Classification of hype-rspectral remote sensing image based on sparse represe-ntation and spectral Information[J]. Journal of electronics & information technology, 2012, 34(2):268-272.
[20] GAO G. A parzen-window-kernel-based cfar algorithm for ship detection in sar images[J].IEEE geoscience and remote sensing letters, 2011, 8(3):557-561.
[21] ZOU Jinyi, LI Wei, DU Qian. Sparse representation-based nearest neighbor classifiers for hyperspectral imagery[J]. IEEE geoscience and remote sensing letters,2015, 12(12):2418-2422.
[22] XU Yang, WU Zebin, LI Jun, et al. Anomaly detection in hyperspectral images based on low-rank and sparse representation[J]. IEEE transactions on geoscience and remote sensing, 2015, 54(4):1990-2000.
[23] ZHENG Chengyong, LI Hong, WANG Qiong. Reweighted sparse regression for hyperspectral unmixing[J]. IEEE transactions on geoscience and remote sensing,2016,54(1):479-488.
相似文献/References:
[1]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2010,(11):0.
College of Information and Communication Engineering,Harbin Engineering University,Harbin,et al.Anomaly detection algorithm for hyperspectral image by using selective section principal component analysis[J].hebgcdxxb,2010,(04):0.
[2]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2011,(01):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
ZHAO Chunhui,HU Chunmei,SHI Hong.Anomaly detection for a hyperspectral image by using a selective section principal component analysis algorithm[J].hebgcdxxb,2011,(04):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
[3]刘振林,谷延锋,张晔.一种用于高光谱图像特征提取的子空间核方法[J].哈尔滨工程大学学报,2014,(02):238.[doi:10.3969/j.issn.10067043.201309025]
LIU Zhenlin,GU Yanfeng,ZHANG Ye.A subspace kernel learning method for feature extraction of the hyperspectral image[J].hebgcdxxb,2014,(04):238.[doi:10.3969/j.issn.10067043.201309025]
[4]刘丹凤,王立国,赵亮.高光谱图像的同步彩色动态显示[J].哈尔滨工程大学学报,2014,(06):760.[doi:10.3969/j.issn.10067043.201306008]
LIU Danfeng,WANG Liguo,ZHAO Liang.Dynamic display of the hyperspectral image synchronized colors[J].hebgcdxxb,2014,(04):760.[doi:10.3969/j.issn.10067043.201306008]
[5]杨京辉,王立国,钱晋希.基于相关向量机的高光谱图像解混方法[J].哈尔滨工程大学学报,2015,(02):267.[doi:10.3969/j.issn.1006-7043.201311016]
YANG Jinghui,WANG Liguo,QIAN Jinxi.An unmixing algorithm based on the relevance vector machine for hyperspectral imagery[J].hebgcdxxb,2015,(04):267.[doi:10.3969/j.issn.1006-7043.201311016]
[6]赵春晖,靖晓昊,李威.基于StOMP稀疏方法的高光谱图像目标检测[J].哈尔滨工程大学学报,2015,(07):992.[doi:10.3969/j.issn.1006-7043.201404087]
ZHAO Chunhui,JING Xiaohao,LI Wei.Hyperspectral image target detection algorithm based on StOMP sparse representation[J].hebgcdxxb,2015,(04):992.[doi:10.3969/j.issn.1006-7043.201404087]
[7]赵春晖,王佳,王玉磊.采用背景抑制和自适应阈值分割的高光谱异常目标检测[J].哈尔滨工程大学学报,2016,37(02):278.[doi:10.11990/jheu.201409035]
ZHAO Chunhui,WANG Jia,WANG Yulei.Hyperspectral anomaly detection based on background suppression and adaptive threshold segmentation[J].hebgcdxxb,2016,37(04):278.[doi:10.11990/jheu.201409035]
[8]王立国,宛宇美,路婷婷,等.结合经验模态分解和Gabor滤波的高光谱图像分类[J].哈尔滨工程大学学报,2016,37(02):284.[doi:10.11990/jheu.201411032]
WANG Liguo,WAN Yumei,LU Tingting,et al.Hyperspectral image classification by combining empirical mode decomposition with Gabor filtering[J].hebgcdxxb,2016,37(04):284.[doi:10.11990/jheu.201411032]
[9]王立国,杨月霜,刘丹凤.基于改进三重训练算法的高光谱图像半监督分类[J].哈尔滨工程大学学报,2016,37(06):849.[doi:10.11990/jheu.201505078]
WANG Liguo,YANG Yueshuang,LIU Danfeng.Semi-supervised classification for hyperspectral image based on improved tri-training method[J].hebgcdxxb,2016,37(04):849.[doi:10.11990/jheu.201505078]
[10]赵春晖,王鑫鹏,闫奕名.基于密度背景纯化的高光谱异常检测算法[J].哈尔滨工程大学学报,2016,37(12):1722.[doi:10.11990/jheu.201511073]
ZHAO Chunhui,WANG Xinpeng,YAN Yiming.Density background refinement-based anomaly detection algorithm for hyperspectral images[J].hebgcdxxb,2016,37(04):1722.[doi:10.11990/jheu.201511073]