[1]高俊亮,郑子波,嵇春艳,等.N波诱发的瞬变港湾振荡的数值研究[J].哈尔滨工程大学学报,2017,38(08):1203-1209.[doi:10.11990/jheu.201605002]
 GAO Junliang,ZHENG Zibo,JI Chunyan,et al.Numerical study on transient harbor oscillations induced by N-waves[J].hebgcdxxb,2017,38(08):1203-1209.[doi:10.11990/jheu.201605002]
点击复制

N波诱发的瞬变港湾振荡的数值研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年08期
页码:
1203-1209
栏目:
出版日期:
2017-08-25

文章信息/Info

Title:
Numerical study on transient harbor oscillations induced by N-waves
作者:
高俊亮12 郑子波3 嵇春艳1 刘珍1
1. 江苏科技大学 船舶与海洋工程学院, 江苏 镇江 212003;
2. 江苏科技大学 江苏省船舶先进设计制造技术重点实验室, 江苏 镇江 212003;
3. 大连理工大学 船舶工程学院, 辽宁 大连 116024
Author(s):
GAO Junliang12 ZHENG Zibo3 JI Chunyan1 LIU Zhen1
1. School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
2. Jiangsu Key Laboratory of Advanced Design and Manufacturing Technology for Ship, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
3. School of Naval Architecture and Ocean Engineering, Dalian University of Technology, Dalian 116024, China
关键词:
海岸工程港湾振荡矩形港口Boussinesq模型N波正交模态分解法波能分布波幅瞬变
分类号:
O353.2
DOI:
10.11990/jheu.201605002
文献标志码:
A
摘要:
为了研究海啸波诱发的瞬变港湾振荡问题,本文采用一组完全非线性Boussinesq模型,模拟了由波峰在前和波谷在前的两种类型的等边N波入射诱发的狭长矩形港内的瞬变港湾振荡现象。基于正交模态分解法,定量分离了港内不同共振模态的响应幅值,并系统研究了入射N波类型和入射波波幅对港内相对波能分布的影响。研究表明:在本文所研究的特定港口和入射波波幅范围内,当入射波波幅较小时,以上两种类型N波诱发的港内相对波能分布几乎完全相同,并且波能几乎都集中在最低的几个共振模态上。随着入射波波幅的增大,分布于更高模态上的波能的比重增加,港内波能的分布趋于均匀,并且占有最大波能的共振模态逐渐由较低的模态向较高的模态转移。相比于波峰在前的等边N波,波谷在前的等边N波诱发的港内波能分布得更加均匀。

参考文献/References:

[1] LÓPEZ M, IGLESIAS G. Long wave effects on a vessel at berth[J]. Applied ocean research, 2014, 47:63-72.
[2] KULIKOV E A, RABINOVICH A B, THOMSON R E, et al. The landslide tsunami of November 3, 1994, Skagway Harbor, Alaska[J]. Journal of geophysical research, 1996, 101(3):6609-6615.
[3] PATTIARATCHI C B, WIJERATNE E M S. Tide gauge observations of 2004-2007 Indian Ocean tsunamis from Sri Lanka and Western Australia[J]. Pure and applied geophysics, 2009, 166(1):233-258.
[4] GAO J, JI C, GAIDAI O, et al. Numerical study of infragravity waves amplification during harbor resonance[J]. Ocean engineering, 2016, 116:90-100.
[5] DONG G, GAO J, MA X, et al. Numerical study of low-frequency waves during harbor resonance[J]. Ocean engineering, 2013, 68:38-46.
[6] LEPELLETIER T G. Tsunamis-harbor oscillations induced by nonlinear transient long waves. Report No. KH-R-41[R]. Pasadena, California:W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, 1980.
[7] DONG G, WANG G, MA X, et al. Harbor resonance induced by subaerial landslide-generated impact waves[J]. Ocean engineering, 2010, 37(10):927-934.
[8] WANG G, DONG G, PERLIN M, et al. Numerical investigation of oscillations within a harbor of constant slope induced by seafloor movements[J]. Ocean engineering, 2011, 38(17/18):2151-2161.
[9] GAO J, MA X, DONG G, et al. Numerical study of transient harbor resonance induced by solitary waves[J]. Proceedings of the Institution of Mechanical Engineers, Part M:Journal of engineering for the maritime environment, 2016, 230(1):163-176.
[10] TADEPALLI S, SYNOLAKIS C E. The run-up of N-waves on sloping beaches[J]. Proceedings of the royal society london A:mathematical, physical & engineering sciences, 1994, 445:99-112.
[11] TADEPALLI S, SYNOLAKIS C E. Model for the leading waves of tsunamis[J]. Physical review letters, 1996, 77(10):2141-2144.
[12] KIRBY J T. Boussinesq models and applications to nearshore wave propagation, surfzone processes and wave-induced currents[J]. Elsevier oceanography series, 2003, 67:1-41.
[13] SHI F, KIRBY J T, HARRIS J C, et al. A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean modelling, 2012, 43-44:36-51.
[14] CHEN Q. Fully nonlinear Boussinesq-type equations for waves and currents over porous beds[J]. Journal of engineering mechanics, 2006, 132(2):220-230.
[15] KENNEDY A B, KIRBY J T, CHEN Q, et al. Boussinesq-type equations with improved nonlinear performance[J]. Wave motion, 2001, 33:225-243.
[16] SOBEY R J. Normal mode decomposition for identification of storm tide and tsunami hazard[J]. Coastal engineering, 2006, 53:289-301.
[17] GAO J, MA X, DONG G, et al. Improvements on the normal mode decomposition method used in harbor resonance[J]. Proceedings of the institution of mechanical engineers, part M:journal of engineering for the maritime environment, 2015, 229(4):397-410.

备注/Memo

备注/Memo:
收稿日期:2016-05-03。
基金项目:国家自然科学基金项目(51609108);江苏科技大学江苏省船舶先进设计制造技术重点实验室开放研究基金项目(CJ1504).
作者简介:高俊亮(1988-),男,讲师.
通讯作者:高俊亮,E-mail:gaojunliang880917@163.com
更新日期/Last Update: 2017-08-28