参考文献/References:
[1] 童庆禧,张兵,郑兰芬. 高光谱遥感[M]. 北京:高等教育出版社,2006.
[2] SHAHSHAHANI B M,LANDGREBE D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the hughes phenomenon[J].IEEE Trans. Geosci. Remote Sens, 1994,17(9):1087-1095.
[3] ZHANG D,ZHOU Z,CHEN S. Semi-supervised dimensionality reduction[C]//Proceedings of the 7th International Conference on Data Mining.Omaha,USA, 2007:629-634.
[4] CHAPELLE O, SCHOLKOPF B. Semisupervised learning[M].Cambridge:MIT Press, 2006.
[5] NIGAM K, CHANI R. Analyzing the effectiveness and applicability of co-training[C]//Proceedings of the Ninth International Conference on Information and Knowledge Management.Halifax, 2000:86-93.
[6] BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the Eleventh Annual Conference on Computational Learning Theory.New York, USA, 1998:92-100.
[7] MILLER D, UYAR H S. A mixture of experts classifier with learning based on both labelled and unlabelled data[C]//Advances in Neural Information Processing Systems. Cambridge, MA, USA,1997:571-577.
[8] NIGAM K,MCCALLUM, THRUN S.Text classification from labeled and unlabeled documents using EM[J]. Machine learning, 2000, 39(3):103-134.
[9] JOACHIMS T. Transductive inference for text classification usingsupport vector machines[C]//Proceedings of the Sixteenth International Conference on Machine Learning. San Francisco, CA, USA 1999:200-209.
[10] BELKIN M, NIYOGI P, SINDHWANI. Manifold regularization:A geometric framework for learning from labeled and unlabeled examples[J]. The journal of machine learning research, 2006, 7(11):2399-2434.
[11] ZHOU Z H,LI M. Tri-training:exploiting unlabeled data using three classifiers[J].IEEE transactions on knowledge and data engineering, 2005, 17(11):1529-1541.
[12] 王立国, 张晔, 谷延锋.支持向量机多类目标分类器的结构简化研究[J]. 中国图象图形学报, 2005, 10(5):571-572.WANG Liguo,ZHANG Ye,GU Yanfeng. The research of simplification of structure of multi-class classifier of support vector mach ine[J]. Journal of image and graphics, 2005,10(5):571-572.
[13] MARCONCINI M,CAMPLES G, BRUZZONE L.A composite semi-supervised SVM for classification of hyperspectral imaages[J]. IEEE geoscinence and remote sensing letters, 2009, 6(2):234-238.
[14] JOACHIMS T. Transductive inference for text classification using support vector machines[C]//Proceedings of the Twenty-first International Conference on Machine Learning. San Francisco, CA, USA, 1999:200-209.
[15] BLUM A, CHAWLA S. Learning from labeled and unlabeled data using graph mincuts[C]//Proceedings of the 18th international conference on machine learning. Williamstwn MA, USA, 2001:19-26.
[16] ZHOU D Y, BOUSQUET O,LAL T N,et al.Learning with local and global consistency[C]//Proceedings of Advances in Neural Information Processing Systems.Tuebingen,Germany, 2004:321-328.
[17] BAI Bendu, FAN Jiulun. Learning with local and global consistency based on sparse representation[J]. Journal of Xi’an university of posts and telecommunications, 2003, 7(4):79-85.
[18] GUI Jie,HUANG Deshuang,YOU Zhuhong.An improvement on learning with local and global consistency[C]//Proceedings of the 19th International Conference on Pattern Recognition.Tampa,FL, USA, 2008:1-4.
[19] NGUYEN H T,SMEULDERS A.Active learning using pre-clustering[C]//Proceedings of the Twenty-First International Conference on Machine Learning,Canada, 2004:79-80.
[20] SCHOHN G,COHN D. Less is more active learning with support vectors machines[C]//Proceedings of the Twenty-First International Conference on Machine Learning, Stanford, 2000:839-846.
[21] CAMPBELL C, CRISTIANINI N,SMOLA A. Query learning with large margin classifiers[C]//Proceedings of the Twenty-First International Conference on Machine Learning. Stanford, 2000:111-118.
[22] SEUNG H,OPPER M,SOMPLINSKY H. Query by committee[C]//Proceedings of the Twenty-First International Conference on Machine Learning. Stanford, 2000:111-118.
[23] FREUND Y, SEUNG H, SHAMIR E. Selective sampling using the query by committee algorithm[J]. Machine learning, 1997, 28(8):133-168.
相似文献/References:
[1]王立国,杨月霜,刘丹凤.基于改进三重训练算法的高光谱图像半监督分类[J].哈尔滨工程大学学报,2016,37(06):849.[doi:10.11990/jheu.201505078]
WANG Liguo,YANG Yueshuang,LIU Danfeng.Semi-supervised classification for hyperspectral image based on improved tri-training method[J].hebgcdxxb,2016,37(07):849.[doi:10.11990/jheu.201505078]
[2]王立国,李阳.融合主动学习的高光谱图像半监督分类[J].哈尔滨工程大学学报,2017,38(08):1322.[doi:10.11990/jheu.201606046]
WANG Liguo,LI Yang.Semi-supervised classification for hyperspectral image collaborating with active learning algorithm[J].hebgcdxxb,2017,38(07):1322.[doi:10.11990/jheu.201606046]
[3]崔颖,王雪婷,陆忠军,等.改进M-training算法的高光谱图像分类[J].哈尔滨工程大学学报,2018,39(10):1688.[doi:10.11990/jheu.201707022]
CUI Ying,WANG Xueting,LU Zhongjun,et al.Hyperspectral image classification based on improved M-training algorithm[J].hebgcdxxb,2018,39(07):1688.[doi:10.11990/jheu.201707022]