[1]何东泽,史冬岩,王青山.一维均匀变截面声子晶体结构振动特性研究[J].哈尔滨工程大学学报,2017,38(07):1135-1142.[doi:10.11990/jheu.201605024]
 HE Dongze,SHI Dongyan,WANG Qingshan.Study on vibration characteristics of one-dimensional phononic crystal with gradient cross-section[J].hebgcdxxb,2017,38(07):1135-1142.[doi:10.11990/jheu.201605024]
点击复制

一维均匀变截面声子晶体结构振动特性研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年07期
页码:
1135-1142
栏目:
出版日期:
2017-07-25

文章信息/Info

Title:
Study on vibration characteristics of one-dimensional phononic crystal with gradient cross-section
作者:
何东泽 史冬岩 王青山
哈尔滨工程大学 机电工程学院, 黑龙江 哈尔滨 150001
Author(s):
HE Dongze SHI Dongyan WANG Qingshan
College of Mechanical And Electrical Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
声子晶体振动带隙回传射线矩阵法有限元法频率响应曲线振动特性变截面
分类号:
TH113.1
DOI:
10.11990/jheu.201605024
文献标志码:
A
摘要:
为了研究弹性纵波在一维均匀变截面声子晶体结构中的振动特性,本文采用回传射线矩阵法计算得出频率响应函数曲线,并且与有限元法计算结果进行了对比。通过比较可以看出,二者吻合较好,证明了算法计算的正确性。为了分析各个参数对一维均匀变截面声子晶体的振动特性的影响程度,通过比较分析带隙的起始频率、截止频率、带隙宽度以及带隙范围内的最大衰减程度的变化规律,得出各个参数的影响规律。数值结果表明,各个参数对于一维均匀变截面声子晶体结构的振动特性存在着各自的影响程度,有着不同的规律。

参考文献/References:

[1] CICEK A, SALMAN A, KAYA O A, et al. Phononic crystal surface mode coupling and its use in acoustic Doppler velocimetry[J]. Ultrasonics, 2016, 65:78-86.
[2] LUCKLUM R, LI J, ZUBTSOV M. 1D and 2D phononic crystal sensors[J]. Procedia engineering, 2010(5)436-439.
[3] 温激鸿, 韩小云, 王刚, 等. 声子晶体研究概述[J]. 功能材料, 2003(04):364-367.WEN Jihong, HANXiaoyun, WANG Gang, et al. Review of phononic crystals[J]. Journal of functional materials,2003(04):364-367.
[4] 郁殿龙, 刘耀宗, 邱静, 等. 一维声子晶体振动特性与仿真[J]. 振动与冲击, 2005(02):92-94.YU Dianlong, LIU Yaozong,QIU Jing,et al. Vibration property and simulation of one dimension phononic crystals[J]. Journal of vibration and shock, 2005(2):92-94.
[5] GUO Y, CHEN W, ZHANG Y. Guided wave propagation in multilayered piezoelectric structures[J]. Science in China series G:physics, mechanics and astronomy, 2009, 52(7):1094-1104.
[6] 郭永强. 回传射线矩阵法的理论及其应用[D]. 杭州:浙江大学, 2008:32-34.GUO Yongqiang, The method of reverberation-ray matrixand Its Applications[D]. Hangzhou:Zhejiang University, 2008:32-34.
[7] MIAO F, SUN G, ZHU P. Developed reverberation-ray matrix analysis on transient responses of laminated composite frame based on the first-order shear deformation theory[J]. Composite structures, 2016, 143:255-271.
[8] ZHOU Y Y, CHEN W Q, LV C F, et al. Reverberation-ray matrix analysis of free vibration of piezoelectric laminates[J]. Journal of sound and vibration, 2009, 326(3):821-836.
[9] PAO Y H, CHEN. Elastodynamic theory of framed structures and reverberation-ray matrix analysis[J]. Acta Mechanica, 2009, 204(1-2):61-79.
[10] ZHU J, CHEN W, YE G. Reverberation-ray matrix analysis for wave propagation in multiferroic plates with imperfect interfacial bonding[J]. Ultrasonics, 2011, 52(1):125-132.

相似文献/References:

[1]杜敬涛,贺彦博,冯浩成.散射体旋转角对二维声子晶体带隙结构影响分析[J].哈尔滨工程大学学报,2014,(11):1358.[doi:10.3969/j.issn.1006-7043.201309069]
 DU Jingtao,HE Yanbo,FENG Haocheng.Effects of the rotation angle of scatterers on the band gap structure of a two-dimensional phononic crystal[J].hebgcdxxb,2014,(07):1358.[doi:10.3969/j.issn.1006-7043.201309069]

备注/Memo

备注/Memo:
收稿日期:2016-05-08。
基金项目:国家自然科学基金项目(U1430236).
作者简介:史冬岩(1965-),女,教授,博士生导师;王青山(1989-),男,博士研究生.
通讯作者:史冬岩,E-mail:shidongyan@hrbeu.edu.cn.
更新日期/Last Update: 2017-08-28