[1]朱齐丹,马俊达,刘志林,等.多欠驱动自主水面船的鲁棒协调控制器设计[J].哈尔滨工程大学学报,2017,38(12):1897-1905.[doi:10.11990/jheu.201605028]
 ZHU Qidan,MA Junda,LIU Zhilin,et al.A robust coordination-control design for multiple underactuated autonomous surface vehicles[J].hebgcdxxb,2017,38(12):1897-1905.[doi:10.11990/jheu.201605028]
点击复制

多欠驱动自主水面船的鲁棒协调控制器设计(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年12期
页码:
1897-1905
栏目:
出版日期:
2017-12-25

文章信息/Info

Title:
A robust coordination-control design for multiple underactuated autonomous surface vehicles
作者:
朱齐丹 马俊达 刘志林 刘可
哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
Author(s):
ZHU Qidan MA Junda LIU Zhilin LIU Ke
College of Automation, Harbin Engineering University, Harbin 150001, China
关键词:
欠驱动ASV协调控制外界干扰鲁棒控制通信延时滑模控制图论Lyapunov稳定性理论
分类号:
TP273
DOI:
10.11990/jheu.201605028
文献标志码:
A
摘要:
针对基于海洋环境干扰与水动力参数摄动的多欠驱动自主水面船(autonomous surface vehicles,ASV)协调编队控制问题,本文设计了一种基于上下界终端滑模的鲁棒协调编队控制策略。在运动学回路中,利用单个ASV自身状态信息及其邻居信息,结合图论知识、Lyapunov稳定性理论以及约束函数特性,设计一种纵向速度与艏向转速的辅助控制律,实现了单个ASV跟踪其期望轨迹并与其邻居船体保持协调一致;在动力学回路中,基于终端滑模设计纵向与艏向控制律,使得纵向与艏向速度趋近于其辅助控制律;利用时变非线性级联稳定性理论证明了整个编队闭环控制系统全局一致渐进稳定(globally uniformly asymptotically stable,GUAS);此外,研究了基于通信延时下的多欠驱动ASV轨迹协调控制问题。从仿真实验可以看出距离跟踪误差与艏向角跟踪误差均收敛于零附近的邻域。

参考文献/References:

[1] BELLETER D J W, PETTERSEN K Y. Path following for formations of underactuated marine vessels under influence of constant ocean currents[C]//2014 IEEE 53rd Annual Conference on Decision and Control (CDC). 2014:4521-4528.
[2] ALMEIDA J, SILVESTRE C, PASCOAL A M. Cooperative control of multiple surface vessels with discrete time periodic communications[J]. International journal of robust and nonlinear control, 2012, 22(4):398-419.
[3] KYRKJEBO E, PETTERSEN K Y, WONDERGEM M, et al. Output synchronization control of ship replenishment operations:theory and experiments[J]. Control engineering practice, 2007, 15(6):741-755.
[4] LIU L, WANG D, PENG Z H. Direct and composite iterative neural control for cooperative dynamic positioning of marine surface vessels[J]. Nonlinear dynamics, 2015, 81(3):1315-1328.
[5] GHOMMAM J, MNIF F, BENALI A, et al. Asymptotic backstepping stabilization of an underactuated surface vessel[J]. IEEE transactions on control systems technology, 2006, 14(6):1150-1157.
[6] XIE W, MA B. Position centroid rendezvous and centroid formation of multiple unicycle agents[J]. IET control theory and applications, 2014, 8(17):2055-2061.
[7] SHOJAEI K. Leader-follower formation control of under-actuated autonomous marine surface vehicles with limited torque[J]. Ocean engineering, 2015, 105:196-205.
[8] ARRICHIELLO F, CHIAVERINI S, FOSSEN T. Formati-on control of underactuated surface vessel using the null-space-based behavioral control[C]//2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. 2006:5942-5947.
[9] PENG Z H, WANG D, HU X J. Robust adaptive formation control of underaetuated autonomous surface vehicles with uncertain dynamics[J]. IET Control theory and applications, 2011, 5(12):1378-1387.
[10] DONG W. Cooperative control of underactuated surface vessels[J]. IET control theory and applications, 2010, 4(9):1569-1580.
[11] BORHAUG E, PAVLOV A, PANTELEY E, et al. Straight line path following for formations of underactuated marine surface vessels[J]. IEEE transactions on control systems technology, 2011, 19(3):493-506.
[12] PENG Z, WANG D, LAN W, et al. Decentralized cooperative control of autonomous surface vehicles with uncertain dynamics:a dynamic surface approach[C]//Am-erican Control Conference (ACC), 2011:2174-2179.
[13] DE La TORRE G, YUCELEN T. Consensus with reduced communication links via relative neighboring velocity information[C]//American Control Conference (ACC). 2015:3410-3415.
[14] ZUO Z. Nonsingular fixed-time consensus tracking for second-order multi-agent networks[J]. Automatica, 2015, 54:305-309.
[15] YANG Q, FANG H, CHEN J, et al. Distributed observer-1 based coordination for multiple Lagrangian systems using 2 only position measurements[J]. Control theory and applilations, 2014, 8(17):2102-2114.
[16] DONG W. Flocking of multiple mobile robots based on backstepping[J]. IEEE Transactions on systems, man, and cybernetics, Part B:cybernetics, 2011, 41(2):414-424.
[17] LI J H, LEE P M, JUN B H, et al. Point-to-point navigation of underactuated ships[J]. Automatica, 2008, 44(12):3201-3205.
[18] 沈艳军, 刘万海, 张勇. 一类非线性系统全局有限时间观测器设计[J]. 控制理论与应用, 2010, 27(5):668-674.SHEN Y J, LIU W H, ZHANG Y. Global finite-time observers for a class of nonlinear systems[J]. Control theory & applications, 2010, 27(5):668-674.
[19] BHAT S P, BERNSTEIN D S. Finite-time stability of homogeneous systems[C]//Proc of the American Control Conference, 1997:2513-2514.
[20] LIU L, WANG D, PENG Z. Path following of marine surface vehicles with dynamical uncertainty and time-varying ocean disturbances[J]. Neurocomputing, 2016, 173:799-808.
[21] FOSSEN T I. Handbook of Marine Craft Hydrodynamics and Motion Control[M]. West Sussex:John Wiley & Sons Ltd, 2011:45-58.

相似文献/References:

[1]马明辉,杨庆芳,梁士栋,等.高速公路主线与匝道合流区协调控制方法[J].哈尔滨工程大学学报,2015,(12):1603.[doi:10.11990/jheu.201410005]
 MA Minghui,YANG Qingfang,LIANG Shidong,et al.Coordination control of mainline control and ramp metering in freeway merging area[J].hebgcdxxb,2015,(12):1603.[doi:10.11990/jheu.201410005]
[2]赵志刚,王砚麟,李劲松.多机器人协调吊运系统力位姿混合运动稳定性评价方法[J].哈尔滨工程大学学报,2018,39(01):148.[doi:10.11990/jheu.201608034]
 ZHAO Zhigang,WANG Yanlin,LI Jinsong.Appraise of dynamical stability of multi-robots cooperatively lifting system based on hybrid force-position-pose approach[J].hebgcdxxb,2018,39(12):148.[doi:10.11990/jheu.201608034]

备注/Memo

备注/Memo:
收稿日期:2016-05-09。
基金项目:国家自然科学基金项目(51379044);黑龙江省自然科学基金项目(F200916).
作者简介:朱齐丹(1965-),男,教授,博士生导师;马俊达(1988-),男,博士研究生.
通讯作者:马俊达,E-mail:majunda2016@163.com.
更新日期/Last Update: 2018-01-13