[1]陈东阳,Laith K. Abbas,王国平,等.流场环境对柔性立管湿模态的影响[J].哈尔滨工程大学学报,2017,38(10):1587-1594.[doi:10.11990/jheu.201605083]
 CHEN Dongyang,LAITH K. Abbas,WANG Guoping,et al.Influence of flow field environment on wet modal vibration of flexible riser[J].hebgcdxxb,2017,38(10):1587-1594.[doi:10.11990/jheu.201605083]
点击复制

流场环境对柔性立管湿模态的影响(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年10期
页码:
1587-1594
栏目:
出版日期:
2017-10-25

文章信息/Info

Title:
Influence of flow field environment on wet modal vibration of flexible riser
作者:
陈东阳 Laith K. Abbas 王国平 芮筱亭
南京理工大学 发射动力学研究所, 江苏 南京 210094
Author(s):
CHEN Dongyang LAITH K. Abbas WANG Guoping RUI Xiaoting
Institute of Lunch Dynamics, Nanjing University of Science & Technology, Nanjing 210094, China
关键词:
湿模态声-固耦合模型涡激振动顶张力柔性立管瞬态流场载荷湍流模型干模态
分类号:
TB122
DOI:
10.11990/jheu.201605083
文献标志码:
A
摘要:
为了研究静水压力和瞬态流场载荷对三维柔性立管湿模态的影响,本文基于声-固耦合模型对考虑水介质、顶张力情况下的立管进行湿模态计算,并与理论计算结果以及实验数据对比,验证了该模型的准确性;采用不考虑流-固耦合的计算流体力学(computational fluid dynamics,CFD)方法和考虑流固双向耦合的计算流体力学/计算结构力学(computational fluid dynamics/computational structure dynamics,CFD/CSD)方法分别计算了立管的瞬态流场载荷,并与实验数据对比;将水深产生的静水压力和瞬态流场载荷分别加载到三维柔性立管表面进行静力学分析,计算其湿模态。计算结果表明:立管湿模态频率比干模态频率小很多,且随着顶张力增大而增大;静水压力和瞬态流场载荷都使得湿模态频率略微增加;静水压力和瞬态流场载荷对湿模态低阶振型影响较大,对高阶振型几乎没有影响。

参考文献/References:

[1] 刘德辅, 王树青, 郭海燕. 海洋立管综合环境条件设计标准研究[J]. 海洋工程, 2001, 19(2):13-17.LIU Defu, WANG Shuqing, GUO Haiyan. Study on combined design criteria for marine risers conveying flowing fluid[J]. The ocean engineering, 2011, 19(2):13-17.
[2] 顾海明, 周勇军. 机械振动理论与应用[M]. 南京:东南大学出版社, 2007.GU Haiming, ZHOU Yongjun.Theory and application of mechanical vibration[M]. Nanjing:Southeast University Press, 2007.
[3] 闻邦椿,刘树英,陈照波,等.机械振动理论及应用[M].北京:高等教育出版社, 2009.WEN Bangchun, LIU Shuying, CHEN Zhaobo, et al.Theory and application of mechanical vibration[M]. Beijing:Higher Education Press, 2009.
[4] CHEN Y F, CHEN W J, HE Y L, et al. Dry and wet modal analysis and evaluation of influencing factors for flexible airship envelop[J]. Journal of Shanghai Jiaotong University, 2014, 48(2):1002-1023.
[5] 姜峰, 郑运虎, 梁瑞,等. 海洋立管湿模态振动分析[J]. 西南石油大学学报, 2015, 37(5):159-166.JIANG Feng, ZHENG Yunhu, LIANG Rui, et al. An analysis of the wet modal vibration of marine riser[J]. Journal of Southwest Petroleum University, 2015, 37(5):159-166.
[6] 张光法. 潜深对半潜器附加质量影响分析[J].舰船电子工程, 2012(11):9-10.ZHANG Guangfa. Analysis ofinfluence of submerged depth on adds mass of semmi-submerged device[J]. Ship electronic engineering, 2012(11):9-10.
[7] CHEN D Y, ABBAS L K, RUI X T, et al. Dynamic modeling of sail mounted hydroplanes system-Part I:modal characteristics from a transfer matrix method[J]. Ocean engineering, 2017, 130:629-644.
[8] HUANG K. Riser VIV and its numerical simulation[J]. Engineering sciences, 2013(4):55-60.
[9] ZHU H, YAO J, MA Y, et al. Simultaneous CFD evaluation of VIV suppression using smaller control cylinders[J]. Journal of fluids & structures, 2015,57:66-80.
[10] ZHU H, YAO J. Numerical evaluation of passive control of VIV by small control rods[J]. Applied ocean research, 2015,51:93-116.
[11] 缪旭弘,钱德进,姚熊亮,等.基于ABAQUS声固耦合法的水下结构声辐射研究[J].船舶力学, 2009(2):319-324.MIAO Xuhong, QIAN Dejin, YAO Xiongliang, et al. Sound radiation of underwater structure based on coupledacoustic-structural analysis with ABAQUS[J]. Journal of ship mechanics, 2009(2):319-324.
[12] 田红莉,刘志峰,张乃龙,等.箱体结构的声固耦合有限元分析[J].机械设计与制造, 2007(7):24-26.TIAN Hongli, LIU Zhifeng, ZHANG Nailong. Solid box on the acoustic coupling finite element analysis[J]. Machinery design & manufacture, 2007(7):24-26.
[13] SANAATI B, KATO N. Vortex-induced vibration (VIV) dynamics of a tensioned flexible cylinder subjected to uniform cross-flow[J]. Journal of marine science and technology, 2013, 18(2):247-261.
[14] CUI X Y, HU X, WANG G, et al. An accurate and efficient scheme for acoustic-structure interaction problems based on unstructured mesh[J]. Computer methods in applied mechanics & engineering, 2017, 317:1122-1145.
[15] LUCIUS A, BRENNER G. Unsteady CFD simulations of a pump in part load conditions using scale-adaptive simulation[J]. International journal of heat & fluid flow, 2010, 31(6):1113-1118.
[16] 王翔宇, 李栋. SST-SAS在小分离流动数值模拟中的表现测试[J]. 西北工业大学学报, 2014(3):337-340.WANG Xiangyu, LI Dong. Behavior of SST-SAS for mild airfoil trailing-edge separation[J]. Journal of Northwestern Polytechnical University, 2014(3):337-340.
[17] FRANKE J, FRANK W. Large eddy simulation of the flow past a circular cylinder at Re=3900[J]. Journal of wind engineering and industrial aerodynamics, 2002, 90:1191-1206.
[18] 詹昊,李万平,方秦汉,等. 不同雷诺数下圆柱绕流仿真计算[J]. 武汉理工大学学报, 2008, 30(12):129-132.ZHAN Hao, LI Wanping, FANG Qinhan, et al. Numerical simulation of the flow around a cricular cylinder at varies reynolds number[J]. Journal of Wuhan University of Techonlogy, 2008, 30(12):129-132.

备注/Memo

备注/Memo:
收稿日期:2016-5-24。
基金项目:国防基础科研项目(B2620132013,A2620133008);国家自然科学基金项目(11472135).
作者简介:陈东阳(1987-),男,博士研究生;Laith K. Abbas (1965-),男,教授,博士生导师.
通讯作者:Laith K. Abbas,E-mail:laithabbass@yahoo.com
更新日期/Last Update: 2017-11-25