[1]练继建,燕翔,刘昉,等.流致振动发电的效率[J].哈尔滨工程大学学报,2017,38(10):1545-1553.[doi:10.11990/jheu.201606001]
 LIAN Jijian,YAN Xiang,LIU Fang,et al.Power generating efficiency of flow-induced vibration[J].hebgcdxxb,2017,38(10):1545-1553.[doi:10.11990/jheu.201606001]
点击复制

流致振动发电的效率(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年10期
页码:
1545-1553
栏目:
出版日期:
2017-10-25

文章信息/Info

Title:
Power generating efficiency of flow-induced vibration
作者:
练继建 燕翔 刘昉 张军 任泉超 邢仕强
天津大学 水利工程仿真与安全国家重点实验室, 天津 300072
Author(s):
LIAN Jijian YAN Xiang LIU Fang ZHANG Jun REN Quanchao XING Shiqiang
State Key Laboratory on Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
关键词:
流致振动振幅频率发电机负荷电阻发电效率折合阻尼系数
分类号:
TV7
DOI:
10.11990/jheu.201606001
文献标志码:
A
摘要:
本文为了解流致振动发电功率与振幅、频率、发电机参数及负荷间的强耦合关系,本文建立了水力-振子-电机-负荷耦合运动模型,推导了流致振动发电效率的理论方程,阐明了影响发电效率的控制因素,并提出了最优发电效率的分析方法与发电机的选配原则。结果表明:发电机对振子的阻力可视为系统总阻尼的一部分;系统的发电效率决定于系统的上限效率与上限能量的利用率的乘积;通过分别确定上限效率及上限能量利用率与折合阻尼系数间关系,可确定最优的发电效率及负荷条件;发电机的选配原则为在保证经济性的前提下,尽量使最优上限效率与最优上限能量利用率的折合阻尼系数相等。

参考文献/References:

[1] 谢杰, 许劲松, 郁程. 圆柱绕流的流动分离控制[J]. 哈尔滨工程大学学报, 2011, 32(4):401-406.XIE Jie, XU Jinsong, YU Cheng. A flow separation control on cylinder flow[J]. Journal of Harbin Engineering University, 2011, 32(4):401-406.
[2] 秦伟, 康庄, 宋儒鑫,等. 深水钢悬链立管的双向涡致疲劳损伤时域模型[J]. 哈尔滨工程大学学报, 2013, 34(1):26-33.QIN Wei, KANG Zhuang, SONG Ruxin, et al. Research on time domain model for vortex induced fatigue damage intwo-degree-of-freedom of deepwater steel catenary riser[J]. Journal of Harbin Engineering University, 2013, 34(1):26-33.
[3] 赵恩金, 拾兵, 曹坤. 导流板对海底管线涡激振动的影响[J]. 哈尔滨工程大学学报, 2016, 37(3):320-325.ZHAO Enjin, SHI Bing, CAO Kun. Influence of reflectors onvortex-induced vibration of subsee pipelines[J]. Journal of Harbin Engineering University, 2016, 37(3):320-325.
[4] 丁林, 张力, 杨仲卿. 高雷诺数时分隔板对圆柱涡致振动的影响[J]. 机械工程学报, 2013, 49(14):133-138.DING Lin, ZHANG Li, YANG Zhongqing.Effect of splitter plate on vortex-induced vibration of circular cylinder at high reynolds number[J]. Journal of mechanical engineering, 2013, 49(14):133-138.
[5] 白莱文斯. 流体诱发振动[M]. 吴恕三, 译. 北京:机械工业出版社, 1981.BLENVINS R D. Flow-Induced Vibration[M]. WU Shusan, Trans. Beijing:China Machine Press, 1981.
[6] ALONSO G, MESEGUER J. A parametric study of the galloping stability of two dimensional triangular cross-section bodies[J]. Journal of wind engineering and industrial aerodynamics, 2006, 94:241-53.
[7] FENG C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders[D]. Vancouver:University of British Columbia, 1968.
[8] BEARMAN P W. Vortex shedding from oscillating bluff bodies[J]. Annual review of fluid mechanics, 1984, 16:195-222.
[9] SARPKAYA T. Fluid forces on oscillating cylinders[J]. Journal of waterway port coastal and ocean division ASCE, WW4, 1978, 104:275-290.
[10] KHALAK A, WILLIAMSON C H K. Fluid forces and dynamics of a hydroelastic structure with very low mass and damping[J]. Journal of fluids and structures, 1997, 11(8):973-982.
[11] KHALAK A, WILLIAMSON C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of fluids and structures, 1999, 13(7-8):813-851.
[12] GOVARDHAN R, WILLIAMSON C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of fluid mechanics, 2000, 420:85-130.
[13] WILLIAMSON C H K, GOVARDHAN R. Vortex Induced Vibrations[J]. Annual review of fluid mechanics, 2004, 36:413-455.
[14] DEN HARTOG J P. Mechanical vibrations[M]. 4th. New York:McGraw-Hill, 1956.
[15] PARKINSON G V. Phenomena and modeling of flow-induced vibrations of bluff bodies[J]. Progress in aerospace sciences, 1989, 26(2):169-224.
[16] BEARMAN P W, GARTSHORE I S, MAULL D J, et al. Experiments on flow-induced vibration of a square-section cylinder[J]. Journal of fluids and structures, 1987(1):19-34.
[17] 袁江波, 谢涛, 单小彪,等. 压电俘能技术研究现状综述[J]. 振动与冲击, 2009, 28(10):36-42.YUAN Jiangbo, XIE Tao, SHAN Xiaobiao, et al.A review of current situation for piezoelectric energy harvesting[J]. Journal of vibration and shock, 2009, 28(10):36-42.
[18] MURALT P. Ferroelectric thin films for micro-sensors and actuators:a review[J]. Journal of micromechanics and microengineering, 2000, 10(2):136-146.
[19] GURAV S P, KASYAP A, SHEPLAK M, et al. Uncertainty based design optimization of a micro piezoelectric composite energy reclamation device[C]//10th AIAA/ISSSMO Multidisciplinary Analysis and Optimization Conference. Albany, NY, 2004.
[20] BERNITSAS M M, RAGHAVAN K, BEN-SIMON Y, et al. VIVACE (vortex induced vibration aquatic clean energy) A new concept in generation of clean and renewable energy from fluid flow[J]. Journal of offshore mechanics and arctic engineering, 2008, 130(4):041101-1.
[21] 哈尔滨工程大学. 涡激振动与升力混合动力型水流发电装置:中国, CN 102979660 A[P]. 2013.03.20.
[22] BARRERO-GIL A, ALONSO G, SANZ-ANDRES A. Energy harvesting from transverse galloping[J]. Journal of sound and vibration, 2010, 329:2873-2883.
[23] BARREROG A, PINDADO S, AVILA S. Extracting energy from vortex-induced vibrations:a parametric study[J]. Applied mathematical modelling, 2012, 36:3153-3160.
[24] MEHMOOD A, ABDELKEFI A, HAJJ M R, et al. Piezoelectric energy harvesting from vortex-induced vibrations of circular cylinder[J]. Journal of sound and vibration, 2013, 332:4656-4667.
[25] DAI H L, ABDELKEFI A, WANG L. Theoretical modeling and nonlinear analysis of piezoelectric energy harvesting from vortex-induced vibrations[J]. Journal of intelligent material systems and structures, 2014, 25(14):1861-1874.
[26] DAI H L, ABDELKEFI A, WANG L. Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations[J]. Nonlinear dynamic, 2014, 77:967-981.
[27] 丁林, 张力, 姜德义. 高雷诺数范围内不同形状柱体流致振动特性研究[J]. 振动与冲击, 2015, 34(12):176-181.DING Lin, ZHANG Li, JIANG Deyi.Flow-induced motion of bluff bodies with different cross sections in flow field with high Reynolds number[J]. Journal of vibration and shock, 2015, 34(12):176-181.
[28] 袁鹏, 陈东旺, 王树杰,等. 涡激振动潮流能转换装置获能实验研究[J]. 中国海洋大学学报, 2015, 45(10):114-120.YUAN Peng, CHEN Dongwang, WANG Shujie, et al. Experimental study onvortex-induced vibration tidal current energy conversion[J]. Periodical of Ocean University of China, 2015, 45(10):114-120.
[29] 李小超, 周熙林, 赵利平. 水流-圆柱-发电机动力相互作用量纲分析及实验装置[J]. 实验力学, 2017, 32(1):49-56.LI Xiaochao, ZHOU Xilin, ZHAO Liping.On the dimensional analysis and experimental apparatus of interaction among water current-cylinder and generator[J]. Journal of experimental mechanics, 2017, 32(1):49-56.
[30] CHANG Chechun, KUMAR R A, BERNITSAS M M. VIV and galloping of single circular cylinder with surface roughness at 3.0×104 ≤ Re ≤ 1.2×105[J]. Ocean engineering, 2011, 38:1713-1732.
[31] LEE J H, BERNITSAS M M. High-damping, high-reynolds VIV tests for energy harnessing using the VIVACE converter[J]. Ocean engineering, 2011, 38:1697-1712.

备注/Memo

备注/Memo:
收稿日期:2016-6-1。
基金项目:国家重点研发计划项目(2016YFC0401905).
作者简介:练继建(1965-),男,教授,博士生导师;刘昉(1979-),男,副教授.
通讯作者:刘昉,E-mail:fangliu@tju.edu.cn
更新日期/Last Update: 2017-11-25