[1]李刚,张金利,杨庆,等.基于非线性渗流的大变形固结有限元分析[J].哈尔滨工程大学学报,2017,38(08):1231-1237.[doi:10.11990/jheu.201607027]
 LI Gang,ZHANG Jinli,YANG Qing,et al.Finite element analysis of large-strain consolidation with nonlinear flow[J].hebgcdxxb,2017,38(08):1231-1237.[doi:10.11990/jheu.201607027]
点击复制

基于非线性渗流的大变形固结有限元分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年08期
页码:
1231-1237
栏目:
出版日期:
2017-08-25

文章信息/Info

Title:
Finite element analysis of large-strain consolidation with nonlinear flow
作者:
李刚12 张金利23 杨庆23 蒋明镜4
1. 西京学院 土木工程学院, 西安 710123;
2. 大连理工大学 建设工程学部土木工程学院 岩土工程研究所, 大连 116024;
3. 大连理工大学 海岸和近海工程国家重点实验室, 大连 116024;
4. 同济大学 地下建筑与工程系, 上海 200092
Author(s):
LI Gang12 ZHANG Jinli23 YANG Qing23 JIANG Mingjing4
1. School of Civil Engineering, Xijing University, Xi’an 710123, China;
2. Institute of Geotechnical Engineering, School of Civil Engineering, Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China;
3. State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China;
4. Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
关键词:
大变形非Darcy渗流变渗透系数有限元分析超孔压固结沉降压缩指数
分类号:
TU43
DOI:
10.11990/jheu.201607027
文献标志码:
A
摘要:
为了研究土体在非线性渗流下的固结效应,基于大变形固结理论,考虑非线性渗流(耦合非Darcy渗流与变渗透系数)作用,建立了二维固结控制方程与有限元方程。采用自编程序对某一黏性土体的固结过程进行了计算。通过大量变动参数的计算与分析,探讨了非Darcy渗流与渗透系数随固结变化的影响。计算结果表明:与Darcy渗流相比,非Darcy渗流下的沉降小,超孔压消散缓慢,具有延迟效应。其中,非Darcy渗流试验常数m影响较大,线性渗流起始水力梯度iL影响较小。渗透系数变化对固结的影响与非Darcy渗流相似,压缩指数与渗透系数指数比值αc的影响较大。在非Darcy渗流与渗透系数随固结变化的耦合作用下,沉降显著减小,超孔压消散趋于缓慢,延迟效应更为明显。

参考文献/References:

[1] POSKITT T J. The consolidation of saturated clay with variable permeability and compressibility[J]. Geotechnique, 1969, 19(2):234-252.
[2] TEH C I, NIE X Y. Coupled consolidation theory with non-Darcian flow[J]. Computers and geotechnics, 2002, 29(3):169-209.
[3] HANSBO S. Aspects of vertical drain design:Darcian or non-Darcian flow[J]. Geotechnique, 1997, 47(5):983-992.
[4] 李传勋,谢康和.考虑非达西渗流和变荷载影响的软土大变形固结分析[J].岩土工程学报, 2015, 37(6):1002-1009.LI Chuanxun, XIE Kanghe.Large-strain consolidation of soft clay with non-Darcian flow by considering time-dependent load[J]. Chinese journal of geotechnical engineering, 2015, 37(6):1002-1009.
[5] 李传勋,徐超,谢康和.考虑非达西渗流和应力历史的土体非线性固结研究[J].岩土力学, 2017, 38(1):91-100.LI Chuanxun, XU Chao, XIE Kanghe. Nonlinear consolidation of clayed soil considering non-Darcy flow and stress history[J]. Rock and soil mechanics, 2017, 38(1):91-100.
[6] LI C X, XIE K H, WANG K. Analysis of 1D consolidation with non-Darcian flow described by exponent and threshold gradient[J]. Journal of Zhejiang University:science A, 2010, 11(9):656-667.
[7] LI C X, XIE K H. One-dimensional nonlinear consolidation of soft clay with the non-Darcian flow[J]. Journal of Zhejiang University:science A, 2013, 14(6):435-446.
[8] LI C X, XIE K H, HU A F. One-dimensional consolidation of double-layered soil with non-Darcian flow described by exponent and threshold gradient[J]. Journal of Central South University, 2012, 19(2):562-571.
[9] 董兴泉,李传勋,陈蒙蒙,等. 考虑非达西渗流的双层软土地基大变形非线性固结分析[J]. 岩土力学, 2016, 37(8):2321-2331.DONG Xingquan, LI Chuanxun, CHEN Mengmeng, et al. Analysis of large-strain nonlinear consolidation of double-layer soft clay foundation with considering effect of non-Darcy’s flow[J]. Rock and soil mechanics, 2016, 37(8):2321-2331.
[10] XIE K H, WANG K, WANG Y L, et al. Analytical solution for one-dimensional consolidation of clayey soils with a threshold gradient[J].Computers and geotechnics, 2010, 37(4):487-493.
[11] 崔莉红,成建梅,路万里,等.弱透水层低速非达西流咸水下移过程的模拟研究[J].水利学报, 2014, 45(7):875-881.CUI Lihong, CHENG Jianmei, LU Wanli, et al. Numerical study on saltwater downward migration in aquitard as low velocity non-Darcy flow[J]. Shuili Xuebao, 2014, 45(7):875-881.
[12] 李菲菲,谢康和,邓岳保.考虑指数流的真空预压竖井地基固结解析解[J].中南大学学报:自然科学版, 2015, 46(3):1075-1081.LI Feifei, XIE Kanghe, DENG Yuebao. Analytical solution for consolidation by vertical drains with exponential flow under vacuum preloading[J]. Journal of Central South University:science and technology, 2015, 46(3):1075-1081.
[13] LIU Z Y, SUN L Y, YUE J C. One-dimensional consolidation of saturated clays under time-dependent loadings considering non-Darcy flow[C]//Soil Behavior and Geo-Micromechanics, Shanghai, 2010:1-7.
[14] HANSBO S. Consolidation equation valid for both Darcian and non-Darcian flow[J]. Geotechnique, 2001, 51(1):51-54.
[15] HANSBO S. Deviation from Darcy’s law observed in one-dimensional consolidation[J].Geotechnique, 2003, 53(6):601-605.
[16] TAYLOR D W. Fundamentals of soil mechanics[M].New York:John Wiley and Sons Inc., 1948.
[17] 谢永利,潘秋元.物质构型下的大应变固结方程及其矩阵表述[J].重庆交通学院学报, 1994, 13(2):77-82.XIE Yongli, PAN Qiuyuan.Large-strain consolidation equation and its matrix form based on material configuration[J]. Journal of Chongqing Jiaotong Institute, 1994, 13(2):77-82.
[18] 邓岳保,谢康和,李传勋.考虑非达西渗流的比奥固结有限元分析[J].岩土工程学报, 2012, 34(11):2058-2065.DENG Yuebao, XIE Kanghe, LI Chuanxun. Finite element analysis of Biot’s consolidation with non-Darcian flow[J]. Chinese journal of geotechnical engineering, 2012, 34(11):2058-2065.
[19] 蒋明镜,沈珠江.饱和软土的弹塑性大变形有限元平面固结分析[J].河海大学学报, 1998, 26(1):73-77.JIANG Mingjing, SHEN Zhujiang. Finite element analysis of elasto-plastic large-strain consolidation for saturated Cam-Clay soft soils[J]. Journal of Hohai University, 1998, 26(1):73-77.
[20] 何开胜,沈珠江,彭新宣.两种Lagrangian大变形比奥固结有限元法及其与小变形法的比较[J].岩土工程学报, 2000, 22(1):30-34.HE Kaisheng, SHEN Zhujiang, PENG Xinxuan. The comparison of large strain method using Total and Updated Lagrangian finite element formulation and small strain method[J]. Chinese journal of geotechnical engineering, 2000, 22(1):30-34.

备注/Memo

备注/Memo:
收稿日期:2016-07-11。
基金项目:国家自然科学基金项目(41572252).
作者简介:李刚(1983-),男,讲师,博士;杨庆(1964-),男,教授,博士生导师.
通讯作者:杨庆,E-mail:qyang@dlut.edu.cn
更新日期/Last Update: 2017-08-28