[1]叶金铭,于安斌,王威,等.桨后舵片空化的面元法数值计算方法[J].哈尔滨工程大学学报,2017,38(12):1844-1848.[doi:10.11990/jheu.201607050]
 YE Jinming,YU Anbin,WANG Wei,et al.Numerical investigation of sheet cavitation of rudder behind propeller by surface-panel method[J].hebgcdxxb,2017,38(12):1844-1848.[doi:10.11990/jheu.201607050]
点击复制

桨后舵片空化的面元法数值计算方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年12期
页码:
1844-1848
栏目:
出版日期:
2017-12-25

文章信息/Info

Title:
Numerical investigation of sheet cavitation of rudder behind propeller by surface-panel method
作者:
叶金铭 于安斌 王威 王友乾
海军工程大学 舰船工程系, 湖北 武汉 430033
Author(s):
YE Jinming YU Anbin WANG Wei WANG Youqian
College of Naval Architecture and Power, Naval University of Engineering, Wuhan 430033, China
关键词:
面元法空化螺旋桨尾流场船用舵起始航速舵角剥蚀
分类号:
U661.3
DOI:
10.11990/jheu.201607050
文献标志码:
A
摘要:
舵空化不仅会对舵叶产生剥蚀作用,而且还会引起船体艉部振动和噪声增大,针对舵的空化问题,建立了桨后舵片空泡的面元法数值计算方法。通过面元法对螺旋桨的水动力性能计算得到了螺旋桨表面及尾流面的奇点强度,进而得到螺旋桨的尾流场,以此作为舵的来流输入条件,再通过基于速度势的面元法对舵上的片空泡进行计算,最终得到舵片泡的范围和厚度分布。通过该方法,研究了某型船的桨后舵在各航速各舵角的片空化形状,分析了各舵角时舵的空化起始航速,形成了舵空泡的快速计算方法,该方法可以在舰船设计阶段对舵的空泡性能进行评估,为舵的优化设计提供技术支撑。

参考文献/References:

[1] SHEN Y T, REMMERS K D, JIANG C W. Effects of ship hull and Propeller on rudder cavtation[J]. Journal of ship research, 1997, 4l (3):172-180.
[2] SHEN Y T, JIANG C W, REMMERS K D. A twisted rudder for reduced cavitation[J]. Journal of ship research, 1997, 41(4):260-272.
[3] 陈建挺,虞贲,胡平. 4250 TEU集装箱船舵空泡试验研究[J]. 上海船舶运输科学研究所学报, 2008, 31(2):81-83.CHEN Jianting, YU Lai, HU Ping. An experimental study of rudder cavitation for 4250 TEU container vessel[J]. 2008, 12(2):81-83.
[4] 邓鸿,赵成璧. 大型高速客货船的舵空泡剥蚀及解决方案探索[J]. 船舶设计通讯, 2005, 111(1):65-69.DENG Hong, ZHAO Chengbi. Rudder cavitation and solution search for large fast passenger ferry[J]. Journal of ship designs, 2005, 111(1):65-69.
[5] 黄昊. 民用船舶常规舵系设计的比较及分析[D]. 上海:上海交通大学, 2012:43-63.HUANG Hao. Comparison and analysis of conwentional rudder design for civil ship[D]:Shanghai:Shanghai Jiao Tong University, 2012:43-63.
[6] 张继静. 高速船舵优化及操纵性研究[D]. 哈尔滨:哈尔滨工程大学, 2009:45-48.ZHANG Jijing. Study on optimization and maneuverability of rudder on high-speed-ship[D]. Harbin:Harbin Engineering University, 2009:45-48.
[7] 叶金铭,王威,李渊, 等. 抗空化扭曲舵设计及力学特性研究[C]//2015全国船舶水动力学会议论文集.哈尔滨, 中国,2015:328-335.YE Jinming, WANG Wei, LI Yuan, et al. Research on Hydrodynamic performance of anti-cavitation twisted rudder[C]//2015 Symposium on ship hydrodynamics. Harbin, China, 2015:328-335.
[8] 叶金铭,王威,张凯奇,等. 扭曲舵空化起始航速分析[J]. 哈尔滨工程大学学报, 2016, 37(12):1631-1637.YE Jinming, WANG Wei, ZHANG Kaiqi, et al. Analysis on the cavitation inception speed of twisted rudder[J]. Journal of Harbin Engineering University, 2016, 37(12):1631-1637.
[9] 叶金铭,王威,于安斌, 等. 抗空化扭曲舵的设计及其水动力性能分析[J]. 上海交通大学学报, 2017, 51(3):314-319.YE Jinming, WANG Wei, YU Anbin, et al. Design and numerical analysis of hydrodynamic performance for anti-Cavitation twisted rudder[J]. Journal of Shanghai Jiao Tong University, 2017, 51(3):314-319.
[10] SALVATORE F, ESPOSITO P G. An improved boundary element analysis cavitating three-dimensional hydrofoils[C]//Fourth International Symposium on Cavitation. Wageningen, USA, 2001.
[11] KOOP A H, HOEIJMAKERS H W, SCHNERR G H, et al. Design of twisted cavitation hydrofoil using a barotropic flow method[C]//Six International Symposium on Cavitation. Wageningen, The Netherlands, 2006.
[12] ACHKINADZE A S, BERG A, KRASILNIKOV V I, et al. Numerical prediction of cavitation on propeller blades and rudder using the velocity based source panel method with modified trailing edge[C]//International Summer Scientific School "High Speed Hydrodynamics". Cheboksary, Russia, 2002.
[13] ACHKINADZE A S, BERG A, KRASILNIKOV V I, et al. Numerical analysis of podded and steering systems using a velocity based source boundary element method with modified trailing edge[C]//The Propellers/Shafting’2003 Symposium. Virginia Beach, USA, 2003.
[14] VLADIMIR I K, AAGE B, IVAR J. Numerical prediction of sheet cavitation on rudder and podded propellers using potential and viscous flow solutions[C]//Fith International Symposium on Cavitation. Osaka, Japan, 2003.

相似文献/References:

[1]解学参,黄胜,胡健,等.导管桨内部流场的数值计算[J].哈尔滨工程大学学报,2009,(01):8.
 XIE Xueshen,HUANG Sheng,HU Jianl,et al.Inner flow field calculations for ducted propellers[J].hebgcdxxb,2009,(12):8.
[2]孙存楼,王永生,黄斌.船舶喷水推进器特殊工况性能研究[J].哈尔滨工程大学学报,2011,(07):867.[doi:doi:10.3969/j.issn.1007-7043.2011.07.006]
 SUN Cunlou,WANG Yongsheng,HUANG Bin.Research on waterjet performance in special work conditions[J].hebgcdxxb,2011,(12):867.[doi:doi:10.3969/j.issn.1007-7043.2011.07.006]
[3]詹金林,卢晓平,李光磊.三体船操纵性水动力的势流理论计算[J].哈尔滨工程大学学报,2012,(05):642.[doi:10.3969/j.issn.1006-7043. 201106049]
 ZHAN Jinlin,LU Xiaoping,LI Guanglei.Calculation of trimaran’s maneuverability hydrodynamics by the potential flow theory[J].hebgcdxxb,2012,(12):642.[doi:10.3969/j.issn.1006-7043. 201106049]
[4]刘海军,王聪,邹振祝,等.圆柱体出筒过程头型对流体动力的影响[J].哈尔滨工程大学学报,2012,(06):690.[doi:10.3969/j.issn.1006-7043.201105026]
 LIU Haijun,WANG Cong,ZOU Zhenzhu,et al.Numerical investigation on the hydrodynamic characteristics of a cylinder of different head construction out of launch tube[J].hebgcdxxb,2012,(12):690.[doi:10.3969/j.issn.1006-7043.201105026]
[5]董红星,杨晓光,汤金勇,等.热探针法测量超声场强度分布[J].哈尔滨工程大学学报,2012,(07):911.[doi:10.3969/j.issn.1006-7043.201108016]
 DONG Hongxing,YANG Xiaoguang,TANG Jinyong,et al.Ultrasound intensity distribution measurement using a thermoelectric probe[J].hebgcdxxb,2012,(12):911.[doi:10.3969/j.issn.1006-7043.201108016]
[6]叶金铭,熊鹰,高霄鹏,等.非空泡螺旋桨低频线谱噪声时域预报方法[J].哈尔滨工程大学学报,2013,(01):1.[doi:10.3969/j.issn.1006-7043. 201109009]
 YE Jinming,XIONG Ying,GAO Xiaopeng,et al.Prediction method of low-order blade frequency noise of non-cavitation propeller in time domain[J].hebgcdxxb,2013,(12):1.[doi:10.3969/j.issn.1006-7043. 201109009]
[7]胡常莉,王国玉.头型对回转体非定常空化流动特性影响的实验研究[J].哈尔滨工程大学学报,2014,(05):624.[doi:10.3969/j.issn.10067043.201303046]
 HU Changli,WANG Guoyu.Experimental investigation of unsteady cavitating flows around axisymmetric bodies with different headforms[J].hebgcdxxb,2014,(12):624.[doi:10.3969/j.issn.10067043.201303046]
[8]陈勇,张合,马少杰,等.水下火箭弹头部空化流场的数值仿真研究[J].哈尔滨工程大学学报,2015,(01):29.[doi:10.3969/j.issn.1006-7043.201311037]
 CHEN Yong,ZHANG He,MA Shaojie,et al.Numerical simulation on the cavitation fluid field of an underwater rocket warhead[J].hebgcdxxb,2015,(12):29.[doi:10.3969/j.issn.1006-7043.201311037]
[9]洪锋,袁建平,张金凤,等.余热排出泵小破口失水事故空化特性数值分析[J].哈尔滨工程大学学报,2015,(03):297.[doi:10.3969/j.issn.1006-7043.201311083]
 HONG Feng,YUAN Jianping,ZHANG Jinfeng,et al.Numerical analysis of cavitating flow characteristics in residual heat removal pumps during the SBLOCA[J].hebgcdxxb,2015,(12):297.[doi:10.3969/j.issn.1006-7043.201311083]
[10]刘业宝,苏玉民,赵金鑫,等.环流理论与泵理论相结合的导管桨设计优化[J].哈尔滨工程大学学报,2014,(11):1307.[doi:10.3969/j.issn.1006-7043.201305024]
 LIU Yebao,SU Yumin,ZHAO Jinxin,et al.Optimal design of a ducted propeller based on the circulation theory and pump theory[J].hebgcdxxb,2014,(12):1307.[doi:10.3969/j.issn.1006-7043.201305024]

备注/Memo

备注/Memo:
收稿日期:2016-07-12。
基金项目:国家自然科学基金项目(51579243).
作者简介:叶金铭(1978-),男,副教授;于安斌(1993-),男,硕士研究生.
通讯作者:于安斌,E-mail:2231976199@qq.com.
更新日期/Last Update: 2018-01-13