[1]王伟,杜志江,闫志远,等.面向微创外科手术机械臂的主动力摆位控制策略[J].哈尔滨工程大学学报,2017,38(12):1915-1921.[doi:10.11990/jheu.201607077]
 WANG Wei,DU Zhijiang,YAN Zhiyuan,et al.An active force positioning control strategy for the minimally invasive surgical manipulator[J].hebgcdxxb,2017,38(12):1915-1921.[doi:10.11990/jheu.201607077]
点击复制

面向微创外科手术机械臂的主动力摆位控制策略(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年12期
页码:
1915-1921
栏目:
出版日期:
2017-12-25

文章信息/Info

Title:
An active force positioning control strategy for the minimally invasive surgical manipulator
作者:
王伟 杜志江 闫志远 王伟东
哈尔滨工业大学 机器人技术与系统国家重点实验室, 黑龙江 哈尔滨 150080
Author(s):
WANG Wei DU Zhijiang YAN Zhiyuan WANG Weidong
Harbin Institute of Technology, State Key Laboratory of Robotics and System, Harbin 150080, China
关键词:
微创外科手术机器人人机交互力矩控制重力补偿虚拟工具术前规划顺应控制主动关节被动关节
分类号:
TH-39
DOI:
10.11990/jheu.201607077
文献标志码:
A
摘要:
为了实现微创外科手术机器人的主动手术姿态调整,针对微创手术机械臂的RCM机构特点以及主被动关节相结合的摆位方式,本文提出了基于关节力矩的虚拟工具控制算法以实现操作者与手术机械臂之间的力交互过程。该算法以在关节处安装力矩传感器的方式进行交互力的采集,并结合采样数据提出了一套完整的重力矩补偿方法。根据关节处的受力情况,力控制模型能够实时调整模型参数以响应主动力摆位不同阶段的动态要求。在自行研制的微创外科手术机器人样机上进行相关的实验验证,实验结果表明:各关节的重力矩补偿模型效果明显,基于关节力矩的虚拟工具模型能够实现柔顺自然的人机交互过程,并具有较高的可控性和稳定性,可以较好地完成微创外科手术机械臂的手术位姿调整。

参考文献/References:

[1] MURPHY D A, MILLER J S, LANGFORD D A, et al. Endoscopic robotic mitral valve surgery[J]. The journal of thoracic and cardiovascular surgery, 2006, 132(4):1119-1120.
[2] MEIRELES O, HORGAN S. Applications of surgical robotics in general surgery[M]. New York:Springer, 2011:791-812.
[3] MARESCAUX J, RUBINO F. The ZEUS robotic system:experimental and clinical applications.[J]. Surgical clinics of North America, 2003, 83(6):1305-1315.
[4] MIYAMOTO S, SUGIURA M, WATANABE S, et al. Development of minimally invasive surgery systems[J]. Hitachi review, 2003, 52(4):189-195.
[5] BLAKE H, JACOB R, FRIEDMAN D W, et al. Raven-Ⅱ:an open platform for surgical robotics research[J]. IEEE transactions on biomedical engineering, 2013, 60(4):954-959.
[6] MA J, BERKELMAN P. A compact, simple, and robust teleported robotic surgery system[M]. New York:Springer, 2011:139-158.
[7] KOBAYASHI S, MUIS A, OHNISHI K. Sensorless cooperation between human and mobile manipulator[C]//IEEE International Conference on Industrial Technology. Lyon, France, 2005:811-816.
[8] 游有鹏, 张宇, 李成刚. 面向直接示教的机器人零力控制[J]. 机械工程学报, 2014, 50(3):10-17.YOU Youpeng, ZHANG Yu, LI Chenggang. Force-free control for the direct teaching of robots[J]. Chinese journal of mechanical engineering, 2014, 50(3):10-14.
[9] DUCHAINE V, GOSSELIN C M. General model of human-robot cooperation using a novel velocity based variable impedance control[C]//Euro Haptics Conference. Tsukuba, Japan, 2007:446-451.
[10] ERDEN M S, MARIC’ B. Assisting manual welding with robot[J]. Robotics and computer-integrated manufacturing, 2011, 27(4):818-828.
[11] LECOURS A, MAYER-ST-ONGE B, GOSSELIN C. Variable admittance control of a four-degree-of-freedom intelligent assist device[C]//International Conference on Robotics and Automation. St. Paul, USA, 2012:3903-3908.
[12] KOSUGE K, FUJISAWA Y, FUKUDA T. Control of robot directly maneuvered by operator[C]//International Conference on Intelligent Robots and Systems. Tokyo, Japan, 1993:49-54.
[13] INFANTE M L, KYRKI V. Usability of force-based controllers in physical human-robot interaction[C]//International Conference on Human-Robot Interaction. Lausanne, Switzerland, 2012:355-362.
[14] FERRETTI G, MAGNANI G A, ROCCO P. Assigning virtual tool dynamics to an industrial robot through an admittance controller[C]//International Conference on Advanced Robotics. Munich, Germany, 2009:1-6.
[15] GOTO S, USUI T, KYURA N, et al. Forcefree control with independent compensation for industrial articulated robot arms[J]. Control engineering practice, 2007, 15(6):627-638.

备注/Memo

备注/Memo:
收稿日期:2016-07-28。
基金项目:国家自然科学基金项目(61403107).
作者简介:王伟(1984-),男,博士研究生;杜志江(1972-),男,教授,博士生导师;王伟东(1978-),男,副教授.
通讯作者:王伟东,E-mail:wangweidong@hit.edu.cn.
更新日期/Last Update: 2018-01-13