[1]及春宁,邢国源,张力,等.倾斜流作用下柔性立管涡激振动的数值模拟[J].哈尔滨工程大学学报,2018,39(02):324-331.[doi:10.11990/jheu.201609002]
 JI Chunning,XING Guoyuan,ZHANG Li,et al.Numerical simulations of vortex-induced vibration of flexible riser subjected to inclined flow[J].hebgcdxxb,2018,39(02):324-331.[doi:10.11990/jheu.201609002]
点击复制

倾斜流作用下柔性立管涡激振动的数值模拟(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年02期
页码:
324-331
栏目:
出版日期:
2018-02-05

文章信息/Info

Title:
Numerical simulations of vortex-induced vibration of flexible riser subjected to inclined flow
作者:
及春宁 邢国源 张力 许栋
天津大学 水利安全与仿真国家重点实验室, 天津 300072
Author(s):
JI Chunning XING Guoyuan ZHANG Li XU Dong
State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin 300072, China
关键词:
浸入边界法柔性立管倾斜流涡激振动尾涡模式能量传递行波驻波
分类号:
P751
DOI:
10.11990/jheu.201609002
文献标志码:
A
摘要:
针对倾斜角度为60°来流作用下细长柔性立管的涡激振动问题,应用基于浸入边界法的三维水动力并行计算程序CgLES_IBM,并结合隐式结构动力计算程序X-code,进行了直接数值模拟。研究发现:柔性立管振动表现出明显的驻波特征,绝大部分的振动能量集中在一个窄频段上。两向振动的相位差沿展向周期性变化,在顺流向振动结点处出现180°的相位切换,振动轨迹也对应出现了逆时针和顺时针"8"字形的变化。流体力的时空分布呈现行波和驻波的混合模式。立管大部分处于激励状态,仅在横流向振动结点以下一定范围内处于阻尼状态。倾斜的尾流导致流体力也呈现出一定的行波特征。

参考文献/References:

[1] VANDIVER J K. Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents[J]. Journal of fluids and structures, 1993, 7(5):423-455.
[2] BRIKA D, LANEVILLE A. Vortex-induced vibrations of a long flexible circular cylinder[J]. Journal of fluid mechanics, 1993, 250:481-508.
[3] WILLIAMSON C H K, ROSHKO A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of fluids and structures, 1988, 2(4):355-381.
[4] HUERA-HUARTE F J, BEARMAN P W. Wake structures and vortex-induced vibrations of a long flexible cylinder-Part 1:dynamic response[J]. Journal of fluids and structures, 2009, 25(6):969-990.
[5] HUERA-HUARTE F J, BEARMAN P W. Wake structures and vortex-induced vibrations of a long? exible cylinder-Part 2:drag coefficients and vortex modes[J]. Journal of fluids and structures, 2009, 25(6):991-1006.
[6] CHAPLIN J R, BEARMAN P W, HUERA H J H, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current[J]. Journal of fluids and structures, 2005, 21(1):3-24.
[7] HUANG K, CHEN H C, CHEN C R. Deepwater riser VIV assessment by using a time domain simulation approach[C]//Offshore Technology Conference. Houston, Texas, USA, 2007.
[8] NEWMAN D J, KARNIADAKIS G E. A direct numerical simulation study of flow past a freely vibrating cable[J]. Journal of fluid mechanics, 1997, 344:95-136.
[9] BOURGUET R, KARNIADAKIS G E, TRIANTAFYLLOU M S. Vortex-induced vibrations of a long flexible cylinder in shear flow[J]. Journal of fluid mechanics, 2011, 677:342-382.
[10] LUCOR D, IMAS L, KARNIADAKIS G E. Vortex dislocations and force distribution of long? exible cylinders subjected to sheared flows[J]. Journal of fluids and structures, 2001, 15(3/4):641-650.
[11] VAN ATTA C W. Experiments on vortex shedding from yawed circular cylinders[J]. AIAA journal, 1968, 6(5):931-933.
[12] THAKUR A, LIU X, MARSHALL J S. Wake flow of single and multiple yawed cylinders[J]. Journal of fluids engineering, 2004, 126(5):861-870.
[13] WILLDEN R H J, GUERBI M. Vortex dynamics of stationary and oscillating cylinders in yawed flow[C]//IUTAM Symposium on Bluff Body Wakes and Vortex-Induced Vibration (BBVIV-6). Capri, Italy, 2010:47-54.
[14] RAMBERG S E. The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders[J]. Journal of fluid mechanics, 1983, 128:81-107.
[15] ZHAO Ming, CHENG Liang, ZHOU Tongming. Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length[J]. Journal of fluids and structures, 2009, 25(5):831-847.
[16] BOURGUET R, KARNIADAKIS G E, TRIANTAFYLLOU M S. On the validity of the independence principle applied to the vortex-induced vibrations of a flexible cylinder inclined at 60°[J]. Journal of fluids and structures, 2015, 53:58-69.
[17] JI C, MUNJIZA A, WILLIAMS J J R. A novel iterative direct-forcing immersed boundary method and its finite volume applications[J]. Journal of computational physics, 2012, 231(4):1797-1821.
[18] TONG Feifei, CHENG Liang, ZHAO Ming. Numerical simulations of steady flow past two cylinders in staggered arrangements[J]. Journal of fluid mechanics, 2015, 765:114-149.
[19] NAITO H, FUKAGATA K. Control of flow around a circular cylinder for minimizing energy dissipation[J]. Physical review E, 2014, 90(6):053008.
[20] DAHL J M, HOVER F S, TRIANTAFYLLOU M S, et al. Dual resonance in vortex-induced vibrations at subcritical and supercritical Reynolds numbers[J]. Journal of fluid mechanics, 2010, 643:395-424.
[21] VANDIVER J K, JAISWAL V, JHINGRAN V. Insights on vortex-induced, traveling waves on long risers[J]. Journal of fluids and structures, 2009, 25(4):641-653.
[22] MODARRES-SADEGHI Y, MUKUNDAN H, DAHL J M, et al. The effect of higher harmonic forces on fatigue life of marine risers[J]. Journal of sound and vibration, 2010, 329(1):43-55.

相似文献/References:

[1]赵西增,付英男,张大可.柱体绕流的CIP方法模拟[J].哈尔滨工程大学学报,2016,37(03):297.[doi:10.11990/jheu.201411003]
 ZHAO Xizeng,FU Yingnan,ZHANG Dake.Numerical simulation of flow past a cylinder using a CIP-based model[J].hebgcdxxb,2016,37(02):297.[doi:10.11990/jheu.201411003]
[2]陈东阳,Laith K. Abbas,王国平,等.流场环境对柔性立管湿模态的影响[J].哈尔滨工程大学学报,2017,38(10):1587.[doi:10.11990/jheu.201605083]
 CHEN Dongyang,LAITH K. Abbas,WANG Guoping,et al.Influence of flow field environment on wet modal vibration of flexible riser[J].hebgcdxxb,2017,38(02):1587.[doi:10.11990/jheu.201605083]
[3]张大可,赵西增,胡子俊,等.低雷诺数下串列双圆柱涡激振动的数值模拟[J].哈尔滨工程大学学报,2018,39(02):247.[doi:10.11990/jheu.201610018]
 ZHANG Dake,ZHAO Xizeng,HU Zijun,et al.Numerical study of flow-induced vibration of tandem circular cylinders at low Reynolds number[J].hebgcdxxb,2018,39(02):247.[doi:10.11990/jheu.201610018]

备注/Memo

备注/Memo:
收稿日期:2016-09-01。
基金项目:国家自然科学基金项目(51579175,51779172,51621092);天津市自然科学基金项目(12JCQNJC02600).
作者简介:及春宁(1978-),男,教授,博士生导师;邢国源(1992-),男,硕士研究生.
通讯作者:及春宁,E-mail:cnji@tju.edu.cn.
更新日期/Last Update: 2018-03-07