[1]欧勇鹏,周广礼,吴浩.气泡高速艇波浪中阻力及运动性能数值研究[J].哈尔滨工程大学学报,2017,38(12):1849-1857.[doi:10.11990/jheu.201609022]
 OU Yongpeng,ZHOU Guangli,WU Hao.Numerical investigation of the effects of air cavity on the resistance and longitudinal motion of a high-speed air cavity craft in regular waves[J].hebgcdxxb,2017,38(12):1849-1857.[doi:10.11990/jheu.201609022]
点击复制

气泡高速艇波浪中阻力及运动性能数值研究(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年12期
页码:
1849-1857
栏目:
出版日期:
2017-12-25

文章信息/Info

Title:
Numerical investigation of the effects of air cavity on the resistance and longitudinal motion of a high-speed air cavity craft in regular waves
作者:
欧勇鹏 周广礼 吴浩
海军工程大学 舰船工程系, 湖北 武汉 430033
Author(s):
OU Yongpeng ZHOU Guangli WU Hao
Department of Naval Ship Engineering, Naval University of Engineering, Wuhan 430033, China
关键词:
气泡高速艇纵向运动气层稳定性数值波浪水池气层形态气层面积减阻率
分类号:
U661.32
DOI:
10.11990/jheu.201609022
文献标志码:
A
摘要:
为探索气泡高速艇在波浪中的减阻效果及运动性能,基于RANS方法,应用Overset网格技术、数值造波、HRIC-VOF方法及6-DOF运动模型构建气泡高速艇静水及波浪中的数值水池,阻力计算与试验值的偏差小于4.59%,纵向运动计算值与试验值偏差小于6.4%。进而分析了气层对B.H.型高速艇波浪中阻力、纵向运动的影响规律,研究了艇体运动对气层面积与形态的影响规律,获得了波浪中气层-艇体相互作用的力学过程;气层对垂荡的影响甚微,对纵摇有改善效果;顶浪条件下纵向运动对气层面积的影响不大,波浪中的减阻率仍可达27.24%~30.62%。

参考文献/References:

[1] SVERCHKOV A V.Application of air cavities on high-speed ships in Russia[C]//Proceeding of the International Conference on Ship Drag Reduction SMOOTH-SHIPS. Istanbul, Turkey, 2010:20-24.
[2] 董文才.滑行艇及平板气层减阻的研究[D].武汉:海军工程大学,2003.DONG Wencai. Study on the effect of air layer on planning craft and flat plate[D]. Wuhan:Naval University of Engineering, 2003.
[3] 董文才,郭日修,陈小玲,等.滑行艇气层减阻试验[J].中国造船, 2002, 43(4):13-18.DONG Wencai,GUO Rixiu,CHEN Xiaoling,et al.Experimental study on resistance reduction of planning craft by air[J].Shipbuilding of China, 2002, 43(4):13-18.
[4] 唐桂林,倪其军,王丽艳,等.高速气泡艇阻力数值模拟及气泡减阻效果分析[J].船舶力学, 2014, 8(18):882-888.TANG Guilin, NI Qijung, WANG Liyan, et al. Numerical evaluation of the resistance reduction effect for three-dimensional high-speed air cavity craft[J]. Journal of ship mechanics, 2014, 8(18):882-888.
[5] DONG Wencai,OU Yongpeng.Experimental study on resistance and longitudinal motion of high-speed air cavity craft[J].Journal of ship mechanics, 2011, 9(15):950-959.
[6] 欧勇鹏,董文才,许勇.B.H型气泡高速艇规则波中纵向运动试验研究[J]. 中国造船, 2010, 51(3):1-10.OU Yongpeng, DONG Wencai, XU Yong. Experimental study on the longitudinal motion performances of bottom hollowed high speed air craft in regular wave[J].Shipbuilding of China, 2010, 51(3):1-10.
[7] JIN-KEUN C,CHAO-TSUNG H,GEORGES L.Numerical studies on the hydrodynamic performance and the startup stability of high speed ship hulls with air plenums and air tunnels[C]//Ninth International Conference on Fast Sea Transportation FAST2007.Shanghai,China, 2007:476-484.
[8] MUZAFERIJA S, PERIC M, SAMES P, et al. A two-fluid Navier-Stokes solver to simulate water entry[C]//Proc Twenty-Second Symposium on Naval Hydrodynamics. 1998.
[9] SHONIBARE O Y,WARDLE K E.Numerical investigation of vertical plunging jet using a hybrid multifluid-VOF multiphase CFD solver[C]//International Journal of Chemical Engineering.[S.l.], 2015, 925639.
[10] WACLAWCZYK T, KORONOWICZ T. Comparison of CICSAM and HRIC high-resolution schemes for interface capturing[J]. Journal of theoretical and applied mechanics, 2008, 46(2):325-345.
[11] SHIH T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy-viscosity model for high Reynolds number turbulent flows-model development and validation[J]. Computers & fluids, 1995, 24(3):227-238.
[12] YONG Xua, ZHANG Guoqing. Numerical calculation for the flow in the air-thrust bearings[C]//Procedia Engineering.[S.l.], 2011:922-927.
[13] FENTON J D. A fifth-order stokes theory for steady waves[J]. J waterway, port, coastal and ocean engineering, 1985,111(2):216-234.
[14] 欧勇鹏.气泡高速艇水动力性能研究[D].武汉:海军工程大学, 2009.OU Yongpeng. Study on hydrodynamic performance of high speed air cavity craft[D]. Wuhan:Naval University of Engineering, 2009.

相似文献/References:

[1]张恒,李积德,赵晓东.单体复合船型向大型化推广应用研究[J].哈尔滨工程大学学报,2009,(01):14.
 ZHANG Heng,LI Jide,ZHAO Xiaodong.Research on the application of hybrid monohull techniques ’to larger ships[J].hebgcdxxb,2009,(12):14.
[2]姚朝帮,董文才,许 勇,等.深V型艇系列模型纵向运动试验研究[J].哈尔滨工程大学学报,2010,(09):0.
 YAO Chao-bang,DONG Wen-cai,XU Yong YUE Guo-qiang.A systematic experimental study on longitudinal motion of deep-V crafts in waves[J].hebgcdxxb,2010,(12):0.
[3]欧勇鹏,董文才.气泡高速艇艇底气穴形态及减阻机理研究[J].哈尔滨工程大学学报,2013,(01):51.[doi:10.3969/j.issn.1006-7043. 201204066]
 OU Yongpeng,DONG Wencai.Study on high-speed air cavity craft form and mechanism of[J].hebgcdxxb,2013,(12):51.[doi:10.3969/j.issn.1006-7043. 201204066]
[4]王硕,苏玉民,庞永杰,等.高速滑行艇在规则波中的纵向运动数值研究[J].哈尔滨工程大学学报,2014,(01):45.[doi:10.3969/j.issn.1006-7043.201307019]
 WANG Shuo,SU Yumin,PANG Yongjie,et al.Numerical study on longitudinal motions of a high-speed planing craft in regular waves[J].hebgcdxxb,2014,(12):45.[doi:10.3969/j.issn.1006-7043.201307019]

备注/Memo

备注/Memo:
收稿日期:2016-09-12。
基金项目:广东省教育部产学研结合项目(2012B091000137);高性能船舶技术教育部重点实验室开放基金课题项目(2015121201).
作者简介:欧勇鹏(1982-),男,讲师,博士;周广礼(1990-),男,博士研究生.
通讯作者:周广礼,E-mail:zhouguangli.1990@163.com.
更新日期/Last Update: 2018-01-13