[1]张阿樱,吕海宝.巴基纸基复合材料导热性能模拟[J].哈尔滨工程大学学报,2017,38(11):1812-1816.[doi:10.11990/jheu.201610001]
 ZHANG Aying,LYU Haibao.Simulation analysis on thermal conductivity of composites reinforced by buckypaper[J].hebgcdxxb,2017,38(11):1812-1816.[doi:10.11990/jheu.201610001]
点击复制

巴基纸基复合材料导热性能模拟(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年11期
页码:
1812-1816
栏目:
出版日期:
2017-11-25

文章信息/Info

Title:
Simulation analysis on thermal conductivity of composites reinforced by buckypaper
作者:
张阿樱12 吕海宝2
1. 哈尔滨学院 图书馆, 黑龙江 哈尔滨 150086;
2. 哈尔滨工业大学 复合材料与结构研究所, 黑龙江 哈尔滨 150001
Author(s):
ZHANG Aying12 LYU Haibao2
1. Library, Harbin University, Harbin 150086, China;
2. Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150001, China
关键词:
纳米复合材料温度分布有限元分析热学性能巴基纸
分类号:
TB332
DOI:
10.11990/jheu.201610001
文献标志码:
A
摘要:
为了优化设计巴基纸/SMP复合材料的加热工况及巴基纸形状,本文采用有限元软件FLUENT分析了不同工况条件下正弦形及直线形巴基纸/SMP复合材料的热传导性能。研究结果表明:加热功率相同时,正弦形巴基纸/SMP复合材料的温度相对较低,温度分布均匀性较好。相同体积内热源作用下,正弦形巴基纸/SMP复合材料达到稳态时温度相对略高;但是正弦形及直线形巴基纸基复合材料达到稳态时,最高温度和最低温度的温差基本相同,远小于相同加热功率作用下正弦形及直线形巴基纸基复合材料达到稳态时最高温度和最低温度的温差。说明巴基纸基复合材料加热的均匀性主要取决于巴基纸加热片的单位体积内热源,而不是加热功率。分析认为,巴基纸加热片的单位体积内热源越小,巴基纸基复合材料达到稳态时温度越低,温度分布越均匀。

参考文献/References:

[1] VALARCEL M, CARDENAS S, SIMONET B M. Role of carbon nanotubes in analytical science[J]. Analytical chemistry, 2007, 79(13):4788-4797.
[2] ⅡJIMA S, ICHIHASHI T. Single-shell carbon nanotubes of 1-nm diameter[J]. Nature, 1993, 363(6430):603-605.
[3] 安振河, 魏化震, 李莹, 等. 碳纳米管的分散及其对酚醛树脂热性能的影响[J]. 工程塑料应用, 2006, 34(1):19-23.AN Zhenhe, WEI Huazhen, LI Ying, et al. Dispersion of CNTs and effect on heat performance of phenol-formaldehyde resin[J]. Engineering plastics application, 2006, 34(1):19-23.
[4] POP E, MANN D, WANG Q, et al. Thermal conductance of an individual single-wall carbon nanotube above room temperature[J]. Nano letters, 2006, 6(1):96-100.
[5] FUJⅡ M, ZHANG X, XIE H, et al. Measuring the thermal conductivity of a single carbon nanotube[J]. Physical review letters, 2005, 95(6):1-4.
[6] HONE J, WHITNEY M, ZETTL A. Thermal conductivity of Single-Walled Carbon Nanotubes[J]. Physical review B condensed matter, 1999, 103(s1-3):2498-2499.
[7] 谢璠, 齐暑华, 李珺鹏,等. 聚合物基导热复合材料的研究进展[J]. 中国胶粘剂, 2011, 20(9):59-64.XIE Fan,QI Shuhua,LI Junpeng,et al. Research progress of polymer-based composites with thermal conductivity[J]. China adhesives, 2011, 20(9):59-64.
[8] ZIED A, FRANCOIS F J, GUILLAUME V. Eco-friendly conductive polymer nanocomposites (CPC) for solar absorbers design[J]. Polymers advanced technologies, 2013, 24(7):638-645.
[9] CHANG C Y, PHILILIPS E M, LIANG R, et al. Alignment and properties of carbon nanotube buckypaper/liquid crystalline polymer composites[J]. Journal of applied polymer science, 2013, 128(3):1360-1368.
[10] WANG Z, LIANG Z, WANG B, et al. Processing and property investigation of single-walled carbon nanotube (SWNT) buckypaper/epoxy resin matrix nanocomposites[J]. Composites part A applied science & manufacturing, 2004, 35(10):1225-1232.
[11] GOU J, O’BRAIN S, GU H, et al. Damping augmentation of nanocomposites using carbon nanofiber paper[J]. Journal of nanomaterials, 2006, 2006(1):189.
[12] VOHRER U, KOLARIC I, HAQUE M H, et al. Carbon nanotube sheets for the use as artificial muscles[J]. Carbon, 2004, 42(5/6):1159-1164.
[13] HU L, HECHT D S, GRUNER G. Percolation in transparent and conducting carbon nanotube networks[J]. Nano letter, 2004, 4(12):2513-2517.
[14] WANG C, ZHANG J, RYU K, et al. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications[J]. Nano letter, 2009, 9(12):4285-4291.
[15] GOU J. Single-walled nanotube bucky paper and nanocomposites[J]. Polymer international, 2006, 55(11):1283-1288.
[16] SWEETING R D, LIU X L. Measurement of thermal conductivity for fiber-reinforced composites[J]. Composites A, 2004, 35A(7-8):933-938.
[17] ISLAM M R, PRAMILA A. Thermal conductivity of fiber reinforced composites by the FEM[J]. Journal of composite materials, 1999,33(18):1699-1715.
[18] CAHILL D G, FORD W K, GOODSON K E, et al. Nanoscale thermal transport[J]. Journal of applied physics, 2003, 93(2):793-818.
[19] ASCIOGLU B, ADANUR S, GUMUSEL L. Modeling of transverse direction thermal conductivity in micro-nano fiber-reinforced composites[J]. Textile research journal, 2009, 79(12):1059-1066.
[20] CHEN G. Ballistic-diffusive equations for transient heat conduction from nano to macroscales[J]. Journal of heat transfer, 2002, 124(2):320-328.
[21] YANG K, HE J, PUNEET P, et al. Tuning electrical and thermal connectivity in multiwalled carbon nanotube buckypaper[J]. Journal of physics condensed matter an institute of physics journal, 2010, 22(33):334215-334220.
[22] MEMON M O, HAILLOT S, LAFDI K. Carbon nanofiber based buckypaper used as a thermal interface material[J]. Carbon, 2011, 49(12):3820-3828.
[23] HONG W T, TAI N H. Investigations on the thermal conductivity of composites reinforced with carbon nanotubes[J]. Diamond & related materials, 2008, 17(7):1577-1581.
[24] GONNET P, LIANG Z Y, CHOI E S, et al. Thermal conductivity of magnetically aligned carbon nanotube buckypapers and nanocomposites[J]. Current applied physics, 2006, 6(1):119-122.
[25] BIERCUK M, LLAGUNO M C, RADOSAVLJEVIC M, et al. Carbon nanotube composites for thermal management[J]. Applied physics letters, 2002, 80(15):2767-2769.
[26] 吕海宝. 电驱动与溶液驱动形状记忆聚合物混合体系及其本构方程[D]. 哈尔滨:哈尔滨工业大学, 2010.LYU Haibao. Electro-and solution-active shape memory polymer blends and their thermodynamic constitutive equation[D]. Harbin:Harbin Institute of Technology, 2010.
[27] 刘金世, 薛庆忠. 碳纳米管复合材料的有效热导率[J]. 石油大学学报:自然科学版, 2004, 28(5):142-144.LIU Jinshi, XUE Qingzhong. Effective thermal conductivity of carbon nanotube composites[J]. Journal of the University of Petroleum, China:Nature Science Edition, 2004, 28(5):142-144.

相似文献/References:

[1]彭友顺,张晓怀,杨立,等.竖壁液膜温度分布数值模拟和红外抑制效果[J].哈尔滨工程大学学报,2013,(02):131.[doi:10.3969/j.issn.1006-7043.201264020]
 PENG Youshun,ZHANG Xiaohuai,YANG Li,et al.Application of liquid film on ship surface in temperature distribution and infrared suppression effective[J].hebgcdxxb,2013,(11):131.[doi:10.3969/j.issn.1006-7043.201264020]
[2]张阿樱,吕海宝.MWCNT纳米纸/形状记忆聚合物复合材料导电性能研究[J].哈尔滨工程大学学报,2014,(04):516.[doi:10.3969/j.issn.10067043.201310025]
 ZHANG Aying,LYU Haibao.Research on the conductive properties of MWCNT nanopaper/shape memory polymer composites[J].hebgcdxxb,2014,(11):516.[doi:10.3969/j.issn.10067043.201310025]
[3]汪骥,陈昌毅,李瑞,等.纳米复合电沉积制备钢基超疏水表面工艺探究[J].哈尔滨工程大学学报,2016,37(05):660.[doi:10.11990/jheu.201501049]
 WANG Ji,CHEN Changyi,LI Rui,et al.Preparation of a superhydrophobic surface on steel substrate by nanocomposite electrodeposition[J].hebgcdxxb,2016,37(11):660.[doi:10.11990/jheu.201501049]
[4]张兴丽,吴限德.热流对超晶格结构热传导影响的分子动力学研究[J].哈尔滨工程大学学报,2017,38(06):945.[doi:10.11990/jheu.201602006]
 ZHANG Xingli,WU Xiande.Effects of heat flux on thermal conductivities of superlattice structure using molecular dynamics simulation[J].hebgcdxxb,2017,38(11):945.[doi:10.11990/jheu.201602006]

备注/Memo

备注/Memo:
收稿日期:2016-10-01。
基金项目:黑龙江省博士后科研启动项目(LBH-Q16141);黑龙江省自然科学基金项目(E201454).
作者简介:张阿樱(1973-),女,高级工程师,博士后;吕海宝(1979-),男,教授,博士生导师.
通讯作者:张阿樱,E-mail:zaying@sina.com.
更新日期/Last Update: 2017-11-30