[1]张大可,赵西增,胡子俊,等.低雷诺数下串列双圆柱涡激振动的数值模拟[J].哈尔滨工程大学学报,2018,39(02):247-253.[doi:10.11990/jheu.201610018]
 ZHANG Dake,ZHAO Xizeng,HU Zijun,et al.Numerical study of flow-induced vibration of tandem circular cylinders at low Reynolds number[J].hebgcdxxb,2018,39(02):247-253.[doi:10.11990/jheu.201610018]
点击复制

低雷诺数下串列双圆柱涡激振动的数值模拟(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年02期
页码:
247-253
栏目:
出版日期:
2018-02-05

文章信息/Info

Title:
Numerical study of flow-induced vibration of tandem circular cylinders at low Reynolds number
作者:
张大可 赵西增 胡子俊 王凯鹏
浙江大学 海洋学院, 浙江 舟山 316021
Author(s):
ZHANG Dake ZHAO Xizeng HU Zijun WANG Kaipeng
Ocean College, Zhejiang University, Zhoushan 316021, China
关键词:
串列双圆柱CIP方法涡激振动N-S方程浸入边界法数值模拟雷诺数涡旋脱落
分类号:
O352
DOI:
10.11990/jheu.201610018
文献标志码:
A
摘要:
针对海洋立管中常发生的流致振动问题,本文采用自主研发的CIP-ZJU数值模型,对雷诺数Re=150条件下串列双圆柱的涡激振动进行模拟。该模型在笛卡尔网格系统下建立,采用具有三阶精度的CIP方法求解N-S (navier-stokes)方程,采用浸入边界法处理流-固耦合问题。本文仅考虑圆柱的横向振动,具体分析不同间距比和折合速度,并分别考虑上游圆柱固定和自由振动两种工况,得到柱体振动响应、受力响应和流场信息,验证了本模型在处理柱体涡激振动问题的有效性。结果表明:串列情况下下游圆柱的最大振幅要明显大于单柱的情况,双圆柱涡激振动的阻力系数普遍比单圆柱涡激振动时要小;上游圆柱固定时,下游圆柱的振动频率几乎不由斯特劳哈尔频率控制;而当上游圆柱自由振动时,在折合速度4 ≤ Ur ≤ 5时,上游圆柱后方产生两列涡,使下游圆柱的运动范围限制在两列涡之间,可对其振动产生了抑制作用。

参考文献/References:

[1] FENG C C. The measurement of vortex induced effects in flow past stationary and oscillating circular and D-section cylinders[D]. Vancouver:The University of British Columbia, 1968.
[2] WILLIAMSON C H K. Vortex dynamics in the cylinder wake[J]. Annual review of fluid mechanics, 1996, 28:477-539.
[3] WILLIAMSON C H K, GOVARDHAN R. Vortex-induced vibrations[J]. Annual review of fluid mechanics, 2004, 36:413-455.
[4] WILLIAMSON C H K, ROSHKO A. Vortex formation in the wake of an oscillating cylinder[J]. Journal of fluids and structures, 1988, 2(4):355-381.
[5] ANAGNOSTOPOULOS P, BEARMAN P W. Response characteristics of a vortex-excited cylinder at low Reynolds numbers[J]. Journal of fluids and structures, 1992, 6(1):39-50.
[6] SHIELS D, LEONARD A, ROSHKO A. flow-induced vibration of a circular cylinder at limiting structural parameters[J]. Journal of fluids and structures, 2001, 15(1):3-21.
[7] SINGH S P, MITTAL S. Vortex-induced oscillations at low Reynolds numbers:hysteresis and vortex-shedding modes[J]. Journal of fluids and structures, 2005, 20(8):1085-1104.
[8] PRASANTH T K, BEHARA S, SINGH S P, et al. Effect of blockage on vortex-induced vibrations at low Reynolds numbers[J]. Journal of fluids and structures, 2006, 22(6/7):865-876.
[9] CARMO B S, SHERWIN S J, BEARMAN P W, et al. Flow-induced vibration of a circular cylinder subjected to wake interference at low Reynolds number[J]. Journal of fluids and structures, 2011, 27(4):503-522.
[10] PRASANTH T K, MITTAL S. Vortex-induced vibration of two circular cylinders at low Reynolds number[J]. Journal of fluids and structures, 2009, 25(4):731-741.
[11] BORAZJANI I, SOTIROPOULOS F. Vortex-induced vibrations of two cylinders in tandem arrangement in the proximity-wake interference region[J]. Journal of fluid mechanics, 2009, 621:321-364.
[12] 陈文曲, 任安禄, 李广望. 串列双圆柱绕流下游圆柱两自由度涡致振动研究[J]. 力学学报, 2004, 36(6):732-738.CHEN Wenqu, REN Anlu, LI Guangwang. The numerical study of two-degree-of-freedom vortex-induced vibration of the downstream cylinder in tandem arrangement[J]. Acta mechanica sinica, 2004, 36(6):732-738.
[13] 及春宁, 陈威霖, 黄继露, 等. 串列双圆柱流致振动的数值模拟及其耦合机制[J]. 力学学报, 2014, 46(6):862-870. JI Chunning, CHEN Weilin, HUANG Jilu, et al. Numerical investigation on flow-induced vibration of two cylinders in tandem arrangements and its coupling mechanisms[J]. Chinese journal of theoretical and applied mechanics, 2014, 46(6):862-870.
[14] WANG Huakun, YU Guoliang, YANG Wenyu. Numerical study of vortex-induced vibrations of three circular cylinders in equilateral-triangle arrangement[J]. Advances in mechanical engineering, 2013, 2013:287923.
[15] SANAATI B, KATO N. A study on the proximity interference and synchronization between two side-by-side flexible cylinders[J]. Ocean engineering, 2014, 85:65-79.
[16] HUERA-HUARTE F J, GHARIB M. Flow-induced vibrations of a side-by-side arrangement of two flexible circular cylinders[J]. Journal of fluids and structures, 2011, 27(3):354-366.
[17] 赵西增, 付英男, 张大可. 柱体绕流的CIP方法模拟[J]. 哈尔滨工程大学学报, 2016, 37(3):297-305. ZHAO Xizeng, FU Yingnan, ZHANG Dake. Numerical simulation of flow past a cylinder using a CIP-based model[J]. Journal of Harbin Engineering University, 2016, 37(3):297-305.
[18] ZHAO Xizeng, CHENG Du, ZHANG Dake, et al. Numerical study of low-Reynolds-number flow past two tandem square cylinders with varying incident angles of the downstream one using a CIP-based model[J]. Ocean engineering, 2016, 121:414-421.
[19] 赵西增, 付英男, 张大可, 等. 紧致插值曲线方法在流向强迫振荡圆柱绕流中的应用[J]. 力学学报, 2015, 47(3):441-450. ZHAO Xizeng, FU Yingnan, ZHANG Dake, et al. Application of a CIP-based numerical simulation of flow past an in-line forced oscillating circular cylinder[J]. Chinese journal of theoretical and applied mechanics, 2015, 47(3):441-450.
[20] YABE T, XIAO Feng, UTSUMI T. The constrained interpolation profile method for multiphase analysis[J]. Journal of computational physics, 2001, 169(2):556-593.
[21] ZHAO Xizeng, HU Changhong. Numerical and experimental study on a 2-D floating body under extreme wave conditions[J]. Applied ocean research, 2012, 35:1-13.
[22] PESKIN C S. Flow patterns around heart valves:a digital computer method for solving the equations of motion[J]. IEEE transactions on biomedical engineering, 1973, BME-20(4):316-317.
[23] CALHOUN D. A Cartesian grid method for solving the two-dimensional streamfunction-vorticity equations in irregular regions[J]. Journal of computational physics, 2002, 176(2):231-275.
[24] TRITTON D J. Experiments on the flow past a circular cylinder at low Reynolds numbers[J]. Journal of fluid mechanics, 1959, 6(4):547-567.
[25] ZHAO Ming, CHENG Liang, ZHOU Tongming. Numerical simulation of vortex-induced vibration of a square cylinder at a low Reynolds number[J]. Physics of fluids, 2013, 25(2):023603.
[26] MITTAL S, KUMAR V. Finite element study of vortex-induced cross-flow and in-line oscillations of a circular cylinder at low Reynolds numbers[J]. International journal for numerical methods in fluids, 1999, 31(7):1087-1120.

相似文献/References:

[1]赵西增,付英男,张大可.柱体绕流的CIP方法模拟[J].哈尔滨工程大学学报,2016,37(03):297.[doi:10.11990/jheu.201411003]
 ZHAO Xizeng,FU Yingnan,ZHANG Dake.Numerical simulation of flow past a cylinder using a CIP-based model[J].hebgcdxxb,2016,37(02):297.[doi:10.11990/jheu.201411003]

备注/Memo

备注/Memo:
收稿日期:2016-10-08。
基金项目:国家自然科学基金项目(51479175,51679212);浙江省杰出青年基金项目(LR16E090002).
作者简介:张大可(1992-),男,硕士研究生;赵西增(1979-),男,教授,博士生导师.
通讯作者:赵西增,E-mail:xizengzhao@zju.edu.cn.
更新日期/Last Update: 2018-03-07