[1]赵春晖,田明华,李佳伟.光谱相似性度量方法研究进展[J].哈尔滨工程大学学报,2017,38(08):1179-1189.[doi:10.11990/jheu.201612063]
 ZHAO Chunhui,TIAN Minghua,LI Jiawei.Research progress on spectral similarity metrics[J].hebgcdxxb,2017,38(08):1179-1189.[doi:10.11990/jheu.201612063]
点击复制

光谱相似性度量方法研究进展(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
38
期数:
2017年08期
页码:
1179-1189
栏目:
出版日期:
2017-08-25

文章信息/Info

Title:
Research progress on spectral similarity metrics
作者:
赵春晖 田明华 李佳伟
哈尔滨工程大学 信息与通信工程学院, 黑龙江 哈尔滨 150001
Author(s):
ZHAO Chunhui TIAN Minghua LI Jiawei
College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China
关键词:
高光谱图像光谱相似性度量二元光谱角N维立体光谱角方法多元光谱相似性度量波段选择端元提取
分类号:
TN911.73
DOI:
10.11990/jheu.201612063
文献标志码:
A
摘要:
为了进一步分析光谱相似性度量在高光谱图像处理中的应用,从距离、投影等角度充分归纳总结了现有二元光谱相似度量方法,并分析讨论了二元光谱相似度量存在的问题。重点介绍了一种多元光谱相似性测量方法,也称N维立体光谱角(N-dimensional solid spectral angle,NSSA)方法。NSSA方法从本质上突破了传统的二元光谱角(spectral angle mapping,SAM)仅能计算两个光谱之间夹角的局限性,具备联合计算多元光谱欧氏空间夹角的能力,为评价多元光谱联合相似性提供了一种定量化的度量手段。最后,对NSSA方法在高光谱波段选择及端元提取领域的潜在研究价值和应用现状进行了分析和展望。通过分析表明NSSA方法所具备的特性可更好地实现光谱相似性度量,在高光谱图像处理领域具有较高的研究价值。

参考文献/References:

[1] 童庆禧, 张兵, 郑兰芬. 高光谱遥感-原理、技术与应用[M]. 北京:高等教育出版社, 2006.TONG Qingxi, ZHANG Bing, ZHENG Lanfen. Hyperspectral remotesensing-theory, technology and application[M]. Beijing:Higher Education Press, 2006.
[2] OPPELT N, MAUSER W. Airborne visible/infrared imaging spectrometer AVIS:design,characterization and calibration[J]. Sensors, 2007, 7(9):1934-1953.
[3] DATT B, MCVICAR T R, Van NIEL T G, et al. Preprocessing eo-1 hyperion hyperspectral data to support the application of agricultural indexes[J]. IEEE transactions on geoscience & remote sensing, 2003, 41(6):1246-1259.
[4] 赵春晖, 王立国, 齐滨. 高光谱遥感图像处理方法及应用[M].北京:电子工业出版社, 2016.ZHAO Chunhui, WANG Liguo, QI Bin. Hyperspectral remote sensing image processing method and application[M]. Beijing:Publishing House of Electronics Industry, 2016.
[5] GROVES P, TIAN L F, BAJWA S G, et al. Hyperspectral image data mining for band selection in agricultural applications[J]. Transactions of the asae, 2004, 47(3):895-907.
[6] CHANG C I, LI Y, HOBBS M C, et al. Progressive band processing of anomaly detection in hyperspectral imagery[J]. IEEE journal of selected topics in applied earth observations & remote sensing, 2015, 8(7):1-16.
[7] HARRIS J R, PONONMAREV P, SHANG J, et al. Noise reduction and best band selection techniques for improving classification results using hyperspectral data:application to lithological mapping in Canada’s Arctic[J]. Canadian journal of remote sensing, 2006, 32(5):341-354.
[8] DU Z, JEONG M K, KONG S G. Band selection of hyperspectral images for automatic detection of poultry skin tumors[J]. IEEE transactions on automation science & engineering, 2007, 4(3):332-339.
[9] KESHAVA N. Distance metrics and band selection in hyperspectral processing with applications to material identification and spectral libraries[J]. IEEE transactions on geoscience & remote sensing, 2004, 42(7):1552-1565.
[10] WANG C, GONG M, ZHANG M, et al. Unsupervised hyperspectral image band selection via column subset selection[J]. IEEE geoscience & remote sensing letters, 2015, 12(7):1411-1415.
[11] DEZA E, DEZA M M. Dictionary of distances[J]. Dictionary of distances, 2006:371-377.
[12] GOWER J C. A general coefficient of similarity and some of its properties[J]. Biometrics, 1971, 27(4):857-871.
[13] THEPADE S D, YADAV N B. Assessment of similarity measurement criteria in Thepade’s sorted ternary block truncation coding (TSTBTC) for content based video retrieval[C]//International Conference on Communication, Information & Computing Technology, Mumbai,2015:1-6.
[14] SCHLAMM A, MESSINGER D. Improved detection and clustering of hyperspectral image data by preprocessing with a euclidean distance transformation[C]//WHISPERS, 2011, 1(2):1-4.
[15] YIN J, WANG Y, ZHAO Z. Optimal band selection for hyperspectral image classification based on inter-class separability[C]//Symposium on Photonics & Optoelectronic, Chengdu, 2010:1-4.
[16] ROBILA S A. Using spectral distances for speedup in hyperspectral image processing[J]. International journal of remote sensing, 2005, 26(24):5629-5650.
[17] ROBILA S A, GERSHMAN A. Spectral matching accuracy in processing hyperspectral data[C]//International Symposium on Signals, Circuits and Systems,[S.l.],2005:163-166.
[18] LEI M, LING Z H, DAI L R. Minimum generation error training with weighted Euclidean distance on LSP for HMM-based speech synthesis[C]//IEEE International Conference on Acoustics Speech & Signal Processing,[S.l.],2010:4230-4233.
[19] DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE transactions on pattern analysis & machine intelligence, 1979, 1(2):224-227.
[20] RAMMAL A, FENNIRI H, GOUPIL A, et al. Features’ selection based on weighted distance minimization, application to biodegradation process evaluation[C]//Signal Processing Conference,[S.l.],2015:2651-2655.
[21] LU B, CHARLTON M, HARRIS P. Geographically Weighted Regression using a non-euclidean distance metric with simulation data[C]//International Conference on Agro-Geoinformatics, Istanbul,2012:1-4.
[22] RAMYA R, SASIKALA T. Experimenting biocryptic system using similarity distance measure functions[C]//Sixth International Conference on Advanced Computing,[S.l.], 2014:72-76.
[23] HONKAVAARA E, ESKELINEN M A, PÖLÖNEN I, et al. Remote sensing of 3-D geometry and surface moisture of a peat production area using hyperspectral frame cameras in visible to short-wave infrared spectral ranges onboard a small unmanned airborne vehicle (UAV)[J]. Geoscience and remote sensing, 2016, 9(54):5440-5454.
[24] VE T, LIN T T, TSAI S C, et al. Permutation arrays under the Chebyshev distance[J]. Mathematics, 2010, 56(6):2611-2617.
[25] GROENEN P J F, MATHAR R, HEISER W J. The majorization approach to multidimensional scaling for Minkowski distances[J]. Journal of classification, 1995, 12(1):3-19.
[26] ZHONG Y, LIN X, ZHANG L. A support vector conditional random fields classifier with a Mahalanobis distance boundary constraint for high spatial resolution remote sensing imagery[J]. IEEE journal of selected topics in applied earth observations & remote sensing, 2014, 7(4):1314-1330.
[27] 夏建涛.基于机器学习的高维多光谱数据分类[D].西安:西北工业大学, 2002.XIA Jiantao. Highdimensional multispectral data classification by machine learning[D].Xi’an:Northwestern Polytechnical University, 2002.
[28] SWEET J N. The spectral similarity scale and its application to the classification of hyperspectral remote sensing data[C]//2003 IEEE Workshop on Advances in techniques for analysis of remotely sensed data, 2003:92-99.
[29] KRUSE F A, LEFKOFF A B, BOARDMAN J W, et al. The spectral image processing systems (SIPS)-interactive visualization and analysis of imaging spectrometer data[J]. Remote sensing of environment 1993, 2(44):145-163.
[30] XUE L. Application of IDL and ENVI redevelopment in hyperspectral image preprocessing[J]. IFIP advances in information and communication technology, 2010, 347:403-409.
[31] KOZODEROV V V, KONDRANIN T V, DMITRIEV E V, et al. A system for processing hyperspectral imagery:application to detecting forest species[J]. International journal of remote sensing, 2014, 35(35):5926-5945.
[32] ARVELYNA Y, SHUICHI M, ATSUSHI M, et al. Hyperspectral mapping for rock and alteration mineral with spectral angle mapping and neural network classification method:study case in warmbad district, south of Namibia[J]. Acta crystallographica, 2011, xiv(a1):1752-1754.
[33] CHO M A, DEBBA P, MATHIEU R, et al. Improving discrimination of savanna tree species through a multiple-endmember spectral angle mapper approach:canopy-level analysis[J]. IEEE transactions on geoscience & remote sensing, 2010, 48(11):4133-4142.
[34] RABAH Z, FARAH I R, MERCIER G, et al. A new method to vhange illumination rffect reduction based on spectral angle constraint for hyperspectral image unmixing[J]. IEEE geoscience & remote sensing letters, 2011, 8(8):1110-1114.
[35] CAMPS-VALLS G. Kernel spectral angle mapper[J]. Electronics letters, 2016, 52(14):1218-1220.
[36] LIU X, YANG C. A Kernel spectral angle mapper algorithm for remote sensing image classification[C]//International Congress on Image and Signal Processing, Hangzhou, 2013:814-818.
[37] ANGELOPOULOU E, LEE S W, BAJCSY R. Spectral gradient:a material descriptor invariant to geometry and incident illumination[C]//The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999:861-867.
[38] CHANG C I. Hyperspectral imaging:techniques for spectral detection and classification[M].[S.l.]:Plenum Publishing Co., 2003.
[39] SU H, DU P, DU P. Hierarchical band clustering for hyperspectral image analysis[C]//Pattern Recognition in U Sensing, 2012:1-4.
[40] HAQ I U, XU X, SHAHZAD A. Band clustering and selection and decision fusion for target detection in hyperspectral imagery[C]//IEEE International Conference on Acoustics, Speech and Signal Processing, 2009:1468-1471.
[41] CHANG C I. Spectral information divergence for hyperspectral image analysis[C]//IGARSS’99 Proceedings, Geoscience and Remote Sensing Symposium, 1999:509-511.
[42] VAKIL M I, MALAS J A, MEGHERBI D B. An information theoretic metric for identifying optimum solution for normalized cross correlation based similarity measures[C]//2015 National Aerospace and Electronics Conference (NAECON), 2015:136-140.
[43] DU Y, CHANG C, REN H, et al. New hyperspectral discrimination measure for spectral characterization[J]. Optical engineering, 2004, 43(8):1777-1786.
[44] 张修宝, 袁艳, 景娟娟,等. 信息散度与梯度角正切相结合的光谱区分方法[J]. 光谱学与光谱分析, 2011, 31(3):853-857.ZHANG Xiubao, YUAN Yan, JING Juanjuan, et al. Spectraldiscrimination medthod information divergence combined with gradient angle[J]. Spectroscopy and spectral analysis, 2011, 31(3):853-857.
[45] 张修宝, 袁艳, 王潜. 基于梯度的信息散度的光谱区分方法[J]. 光学学报, 2011, 31(5):244-248.ZHANG Xiubao, YUAN Yan, WANG Qian. Spectraldiscrimination method based on information divergence of Gradient[J]. Acta optica sinica, 2011, 31(5):244-248.
[46] 吴浩, 徐元进, 高冉. 基于光谱相关角和光谱信息散度的高光谱蚀变信息提取[J]. 地理与地理信息科学, 2016, 32(1):44-48.WU Hao, XU Yuanjin, GAO Ran. Extraction of alteration information from hyperspectral imagery based on SCA and SID[J]. Geography and geo-information science, 2016, 32(1):44-48.
[47] CERRA D, BIENIARZ J, AVBELJ J, et al. Compression-based unsupervised clustering of spectral signatures[C]//The Workshop on Hyperspectral Image & Signal Processing:Evolution in Remote Sensing, 2011:1-4.
[48] GRANAHAN J C, SWEET J N. An evaluation of atmospheric correction techniques using the spectral similarity scale[C]//Geoscience and Remote Sensing Symposium, 2001:2022-2024.
[49] VAN DER MEER F, BAKKER W. CCSM:Cross correlogram spectral matching[J]. International journal of remote sensing, 1997, 18(5):1197-1201.
[50] FANG Y, LI H, MA Y, et al. Dimensionality reduction of hyperspectral images based on robust spatial information using locally linear embedding[J]. IEEE geoscience & remote sensing letters, 2014, 11(10):1712-1716.
[51] DU P, CHEN Y. A novel spectral similarity measure approach based on set operations and spectral polygon[C]//2005 IEEE International Geoscience and Remote Sensing Symposium, 2005:4319-4322.
[52] FENG S, ITOH Y, PARENTE M, et al. Wavelet-based semantic features for hyperspectral signature discrimination[J]. CoRRabs/1602.03903, 2016:1-22.
[53] SHEN L, JIA S. Three-dimensional gabor wavelets for pixel-based hyperspectral imagery classification[J]. IEEE transactions on geoscience & remote sensing, 2011, 49(12):5039-5046.
[54] BACHMANN C M, AINSWORTH T L, FUSINA R A. Exploiting manifold geometry in hyperspectral imagery[J]. IEEE transactions on geoscience & remote sensing, 2005, 43(3):441-454.
[55] TIAN M, FENG J, RIVARD B, et al. A method to compute the n-dimensional solid spectral angle between vectors and its use for band selection in hyperspectral data[J]. International journal of applied earth observation and geoinformation, 2016, 50:141-149.
[56] HAJJA M, WALKER P. The measure of solid angles in n -dimensional Euclidean space[J]. International journal of mathematical education, 2002, 33(5):725-729.
[57] ZHAO C, TIAN M, LIU W, et al. Advanced similarity metric and its application to the band selection issue of multiple spectra identification[J]. Applied optics, 2016, 55(21):5790-5805.
[58] ZHAO C, TIAN M, QI B. Hyperspectral band selection based on the incremental n-dimensional solid spectral angle[C]//20158th International Congress on Image and Signal Processing (CISP), Shenyang, China, 2015:765-770.
[59] 赵春晖, 田明华, 齐滨. 基于最大化N维立体光谱角的高光谱端元提取[J]. 光子学报, 2016, 45(1):1-9.ZHAO Chunhui, TIAN Minghua, QI Bin. Hyperspectralendmember extraction based on maximum N-dimensional solid spectral angle[J]. ACT photonica sinica, 2016, 45(1):1-9.

相似文献/References:

[1]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2010,(11):0.
 College of Information and Communication Engineering,Harbin Engineering University,Harbin,et al.Anomaly detection algorithm for hyperspectral image by using selective section principal component analysis[J].hebgcdxxb,2010,(08):0.
[2]赵春晖,胡春梅,石红.采用选择性分段PCA算法的高光谱图像异常检测[J].哈尔滨工程大学学报,2011,(01):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
 ZHAO Chunhui,HU Chunmei,SHI Hong.Anomaly detection for a hyperspectral image by using a selective section principal component analysis algorithm[J].hebgcdxxb,2011,(08):109.[doi:doi:10.3969/j.issn.1006-7043.2011.01.020]
[3]刘振林,谷延锋,张晔.一种用于高光谱图像特征提取的子空间核方法[J].哈尔滨工程大学学报,2014,(02):238.[doi:10.3969/j.issn.10067043.201309025]
 LIU Zhenlin,GU Yanfeng,ZHANG Ye.A subspace kernel learning method for feature extraction of the hyperspectral image[J].hebgcdxxb,2014,(08):238.[doi:10.3969/j.issn.10067043.201309025]
[4]刘丹凤,王立国,赵亮.高光谱图像的同步彩色动态显示[J].哈尔滨工程大学学报,2014,(06):760.[doi:10.3969/j.issn.10067043.201306008]
 LIU Danfeng,WANG Liguo,ZHAO Liang.Dynamic display of the hyperspectral image synchronized colors[J].hebgcdxxb,2014,(08):760.[doi:10.3969/j.issn.10067043.201306008]
[5]杨京辉,王立国,钱晋希.基于相关向量机的高光谱图像解混方法[J].哈尔滨工程大学学报,2015,(02):267.[doi:10.3969/j.issn.1006-7043.201311016]
 YANG Jinghui,WANG Liguo,QIAN Jinxi.An unmixing algorithm based on the relevance vector machine for hyperspectral imagery[J].hebgcdxxb,2015,(08):267.[doi:10.3969/j.issn.1006-7043.201311016]
[6]赵春晖,靖晓昊,李威.基于StOMP稀疏方法的高光谱图像目标检测[J].哈尔滨工程大学学报,2015,(07):992.[doi:10.3969/j.issn.1006-7043.201404087]
 ZHAO Chunhui,JING Xiaohao,LI Wei.Hyperspectral image target detection algorithm based on StOMP sparse representation[J].hebgcdxxb,2015,(08):992.[doi:10.3969/j.issn.1006-7043.201404087]
[7]赵春晖,王佳,王玉磊.采用背景抑制和自适应阈值分割的高光谱异常目标检测[J].哈尔滨工程大学学报,2016,37(02):278.[doi:10.11990/jheu.201409035]
 ZHAO Chunhui,WANG Jia,WANG Yulei.Hyperspectral anomaly detection based on background suppression and adaptive threshold segmentation[J].hebgcdxxb,2016,37(08):278.[doi:10.11990/jheu.201409035]
[8]王立国,宛宇美,路婷婷,等.结合经验模态分解和Gabor滤波的高光谱图像分类[J].哈尔滨工程大学学报,2016,37(02):284.[doi:10.11990/jheu.201411032]
 WANG Liguo,WAN Yumei,LU Tingting,et al.Hyperspectral image classification by combining empirical mode decomposition with Gabor filtering[J].hebgcdxxb,2016,37(08):284.[doi:10.11990/jheu.201411032]
[9]王立国,杨月霜,刘丹凤.基于改进三重训练算法的高光谱图像半监督分类[J].哈尔滨工程大学学报,2016,37(06):849.[doi:10.11990/jheu.201505078]
 WANG Liguo,YANG Yueshuang,LIU Danfeng.Semi-supervised classification for hyperspectral image based on improved tri-training method[J].hebgcdxxb,2016,37(08):849.[doi:10.11990/jheu.201505078]
[10]赵春晖,王鑫鹏,闫奕名.基于密度背景纯化的高光谱异常检测算法[J].哈尔滨工程大学学报,2016,37(12):1722.[doi:10.11990/jheu.201511073]
 ZHAO Chunhui,WANG Xinpeng,YAN Yiming.Density background refinement-based anomaly detection algorithm for hyperspectral images[J].hebgcdxxb,2016,37(08):1722.[doi:10.11990/jheu.201511073]

备注/Memo

备注/Memo:
收稿日期:2016-12-19。
基金项目:国家自然科学基金项目(61405041,61571145);黑龙江省自然科学基金重点项目(ZD201216);哈尔滨市优秀学科带头人基金项目(RC2013XK009003).
作者简介:赵春晖(1965-),男,教授,博士生导师.
通讯作者:赵春晖,E-mail:zhaochunhui@hrbeu.edu.cn
更新日期/Last Update: 2017-08-28