[1]黄斌,陈仁文,周秦邦,等.SR-CNN融合决策的眼部状态识别方法[J].哈尔滨工程大学学报,2018,39(07):1233-1238.[doi:10.11990/jheu.201612071]
 HUANG Bin,CHEN Renwen,ZHOU Qinbang,et al.Research on eye state recognition using SR-CNN fusion-decision method[J].hebgcdxxb,2018,39(07):1233-1238.[doi:10.11990/jheu.201612071]
点击复制

SR-CNN融合决策的眼部状态识别方法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年07期
页码:
1233-1238
栏目:
出版日期:
2018-07-05

文章信息/Info

Title:
Research on eye state recognition using SR-CNN fusion-decision method
作者:
黄斌 陈仁文 周秦邦 唐杰
南京航空航天大学 机械结构力学及控制国家重点实验室, 江苏 南京 210016
Author(s):
HUANG Bin CHEN Renwen ZHOU Qinbang TANG Jie
State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
关键词:
SR方法融合决策卷积神经网络眼部状态识别过拟合网络优化数据增强
分类号:
TP391.4
DOI:
10.11990/jheu.201612071
文献标志码:
A
摘要:
为了研究人眼状态识别对人眼定位的依赖性和实际使用中分类模型泛化能力不佳的问题,本文提出了一种基于选择性区域的卷积神经网络的融合决策的眼部状态识别方法。该方法用SR方法预处理wild人脸数据集,扩大了训练集的规模并引入了对眼部的先验知识,在此基础上训练卷积神经网络的分类模型进行眼部状态识别的评估。对比实验结果可知,基于SR-CNN融合决策的眼部状态识别方法测试的准确度能达到95%左右,显著降低了测试错误率,提高了模型的泛化能力和准确性。

参考文献/References:

[1] 李都厚, 刘群, 袁伟, 等. 疲劳驾驶与交通事故关系[J]. 交通运输工程学报, 2010, 10(2):104-109.LI Duhou, LIU Qun, YUAN Wei, et al. Relationship between fatigue driving and traffic accident[J]. Journal of traffic and transportation engineering, 2010, 10(2):104-109.
[2] 张伟. 基于机器视觉的驾驶人疲劳状态识别关键问题研究[D]. 北京:清华大学, 2011.ZHANG Wei. Research on key issues in computer vision based driver drowsiness recognition[D]. Beijing:Tsinghua University, 2011.
[3] WIERWILLE W W, WREGGIT S S, KIRN C L, et al. Research on vehicle-based driver status/performance monitoring; development, validation, and refinement of algorithms for detection of driver drowsiness[R]. Washington:U.S. Department, 1994.
[4] 白中浩, 焦英豪, 白芳华. 基于主动形状模型及模糊推理的驾驶疲劳检测[J]. 仪器仪表学报, 2015, 36(4):768-775.BAI Zhonghao, JIAO Yinghao, BAI Fanghua. Driving fatigue detection based on active shape model and fuzzy inference[J]. Chinese journal of scientific instrument, 2015, 36(4):768-775.
[5] 李锐, 蔡兵, 刘琳, 等. 基于模型的驾驶员眼睛状态识别[J]. 仪器仪表学报, 2016, 37(1):184-191.LI Rui, CAI Bing, LIU Lin, et al. Driver’s eye state recognition based on model[J]. Chinese journal of scientific instrument, 2016, 37(1):184-191.
[6] 杨英, 盛敬, 杨佳, 等. 基于神经网络的驾驶员觉醒水平双目标监测法[J]. 东北大学学报(自然科学版), 2007, 28(3):418-421.YANG Ying, SHENG Jing, YANG Jia, et al. Double-objective detection based on neural network for driver’s alert level[J]. Journal of Northeastern University (Natural science), 2007, 28(3):418-421.
[7] BARRON A R. Universal approximation bounds for superpositions of a sigmoidal function[J]. IEEE transactions on information theory, 1993, 39(3):930-945.
[8] BENGIO Y. Learning deep architectures for AI[J]. Foundations and trends in machine learning, 2009, 2(1):1-127.
[9] LENNIE P. The cost of cortical computation[J]. Current biology, 2003, 13(6):493-497.
[10] LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning applied to document recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.
[11] GOODFELLOW I, BENGIO Y, COURVILLE A. Deep learning[EB/OL]. http://www.iro.umontreal.ca/~bengioy/dlbook,2015.
[12] SRIVASTAVA N, HINTON G, KRIZHEVSKY A, et al. Dropout:a simple way to prevent neural networks from overfitting[J]. Journal of machine learning research, 2014, 15(1):1929-1958.
[13] DAUPHIN Y N, PASCANU R, GULCEHRE C, et al. Identifying and attacking the saddle point problem in high-dimensional non-convex optimization[C]//Proceedings of the 28th Annual Conference on Neural Information Processing Systems 2014. Montreal, Canada, 2004.
[14] QIAN Ning. On the momentum term in gradient descent learning algorithms[J]. Neural networks, 1999, 12(1):145-151.
[15] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6):84-90.
[16] 张一鸣, 欧宗瑛, 王虹. 基于C均值K近邻算法的面部表情识别[J]. 智能系统学报, 2008, 3(1):57-61.ZHANG Yiming, OU Zongying, WANG Hong. Facial expression recognition based on C-means and K-nearest neighbor algorithms[J]. CAAI transactions on intelligent systems, 2008, 3(1):57-61.
[17] 孙晓, 潘汀, 任福继. 基于ROI-KNN卷积神经网络的面部表情识别[J]. 自动化学报, 2016, 42(6):883-891.SUN Xiao, PAN Ting, REN Fuji. Facial expression recognition using ROI-KNN deep convolutional neural networks[J]. Acta automatica sinica, 2016, 42(6):883-891.

备注/Memo

备注/Memo:
收稿日期:2016-12-20。
基金项目:国家自然科学基金项目(51675265);江苏高校优势学科建设工程项目(PAPD).
作者简介:黄斌(1992-),男,博士研究生;陈仁文(1966-),男,教授,博士生导师.
通讯作者:陈仁文,E-mail:rwchen@nuaa.edu.cn
更新日期/Last Update: 2018-07-07