[1]庞于涛,王建国,欧阳辉,等.采用钢纤维混凝土的连续钢构桥地震易损性分析[J].哈尔滨工程大学学报,2018,39(04):687-694.[doi:10.11990/jheu.201701020]
 PANG Yutao,WANG Jianguo,OUYANG Hui,et al.Seismic fragility analysis of a continuous rigid frame bridge made from steel fiber reinforced concrete[J].hebgcdxxb,2018,39(04):687-694.[doi:10.11990/jheu.201701020]
点击复制

采用钢纤维混凝土的连续钢构桥地震易损性分析(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年04期
页码:
687-694
栏目:
出版日期:
2018-04-05

文章信息/Info

Title:
Seismic fragility analysis of a continuous rigid frame bridge made from steel fiber reinforced concrete
作者:
庞于涛1 王建国2 欧阳辉1 袁万城2
1. 中国地质大学(武汉) 工程学院, 湖北 武汉 430074;
2. 同济大学 土木工程防灾国家重点实验室, 上海 200092
Author(s):
PANG Yutao1 WANG Jianguo2 OUYANG Hui1 YUAN Wancheng2
1. Faculty of Engineering, China University of Geoscience, Wuhan 430074, China;
2. State Key Laboratory for Disaster Prevention in Civil Engineering, Tongji University, Shanghai 200092, China
关键词:
钢纤维混凝土连续刚构桥地震易损性云图法有限元模型
分类号:
TU312.1
DOI:
10.11990/jheu.201701020
文献标志码:
A
摘要:
为了减少桥梁结构过密的箍筋数量,并提高其施工质量,可以在普通钢筋混凝土中掺入钢纤维,来提高桥墩的强度和塑性区域的延性。以两座钢纤维混凝土连续刚构桥为例,分别建立三维有限元模型,进行非线性时程分析,得到地震易损性曲线来评估桥梁的抗震性能。通过本文分析发现,钢纤维混凝土能够有效地提高桥梁结构自身的抗震能力,而对桥梁结构的地震需求影响相对较小,从而有效地降低地震作用下桥梁结构的失效概率,提高了桥梁结构的抗震性能。对于本文所考虑的刚构桥而言,当钢纤维的体积分数为3%,桥梁的抗震性能能够增加大约30%。

参考文献/References:

[1] AGRAWAL A, JAIN T, AGARWAL S. Compressive strength testing of steel fiber reinforced concrete in different curing regimes[J]. International journal of engineering research & technology, 2014, 3(10):1-5.
[2] Al-MATTARNEH H. Electromagnetic quality control of steel fiber concrete[J]. Construction and building materials, 2014, 73:350-356.
[3] 李方元, 赵人达. 高强混凝土和钢纤维高强混凝土断裂性能试验研究[J]. 混凝土, 2002(8):29-32. LI Fangyuan, ZHAO Renda. Crack performance test investigation of high performance concrete and steel fiber reinforced concrete[J]. Concrete, 2002(8):29-32.
[4] 高丹盈, 陈刚, SADRADDIN H M N, 等. 钢筋与钢纤维混凝土的黏结-滑移性能及其关系模型[J]. 建筑结构学报, 2015, 36(7):132-139. GAO Danying, CHEN Gang, SADRADDIN H M N, et al. Bond-slip behavior and constitutive model between rebar and steel fibre reinforced concrete[J]. Journal of building structures, 2015, 36(7):132-139.
[5] KHALIFA E S. Analytical model for steel fiber concrete composite short-coupling beam[J]. Composites part B:engineering, 2014, 56:318-329.
[6] MANSOUR F R, BAKAR S A, IBRAHIM I S, et al. Flexural performance of a precast concrete slab with steel fiber concrete topping[J]. Construction and building materials, 2015, 75:112-120.
[7] MERTOL H C, BARAN E, BELLO H J. Flexural behavior of lightly and heavily reinforced steel fiber concrete beams[J]. Construction and building materials, 2015, 98:185-193.
[8] YADAV S, AMEERULLAH K, CHRYSELLE J. Shear behavior of steel fiber reinforced concrete beam[J]. International journal of Theoretical and Experimental Research (IJTER), 2014, 1(2):30-33.
[9] SWAMY R N, AL-TA’AN S A. Deformation and ultimate strength in flexure of reinforced concrete beams made with steel fiber concrete[J]. Journal of the American concrete institute, 1981, 78(5):395-405.
[10] QIAN Chunxiang, PATNAIKUNI I. Properties of high-strength steel fiber-reinforced concrete beams in bending[J]. Cement and concrete composites, 1999, 21(1):73-81.
[11] 张于晔, 魏红一, 袁万城. 钢纤维混凝土桥墩抗震性能数值模拟与试验[J]. 同济大学学报(自然科学版), 2013, 41(6):813-820. ZHANG Yuye, WEI Hongyi, YUAN Wancheng. Numerical and experimental study on seismic performance of bridge piers by steel fiber reinforced concrete[J]. Journal of Tongji University(Natural Science), 2013, 41(6):813-820.
[12] ZHANG Yuye, HARRIES K A, YUAN Wancheng. Experimental and numerical investigation of the seismic performance of hollow rectangular bridge piers constructed with and without steel fiber reinforced concrete[J]. Engineering structures, 2013, 48:255-265.
[13] HARAJLI M H, GHARZEDDINE O. Effect of steel fibers on bond performance of steel bars in NSC and HSC under load reversals[J]. Journal of materials in civil engineering, 2007, 19(10):864-873.
[14] CAMPIONE G, CUCCHIARA C, MENDOL L, et al. Experimental investigation on local bond-slip behaviour in lightweight fiber reinforced concrete under cyclic actions[C]//Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada:WCEE, 2004:84-91.
[15] ZHAO Jian, SRITHARAN S. Modeling of strain penetration effects in fiber-based analysis of reinforced concrete structures[J]. ACI structural journal, 2007, 104(2):133-141.
[16] HARAJLI M H. Bond behavior in steel fiber-reinforced concrete zones under static and cyclic loading:experimental evaluations and analytical modeling[J]. Journal of materials in civil engineering, 2010, 22(7):674-686.
[17] 庞于涛, 袁万城, 沈国煜, 等. 基于结构易损性分析的公路桥梁可靠度研究[J]. 哈尔滨工程大学学报, 2012, 33(9):1091-1096. PANG Yutao, YUAN Wancheng, YU Shenguo, et al. Reliability analysis of highway bridges based on structural vulnerability analysis[J]. Journal of Harbin Engineering University, 2012, 33(9):1091-1096.
[18] 袁万城, 王征南, 庞于涛, 等. 连续梁桥在主震-余震序列波下的地震易损性分析[J]. 哈尔滨工程大学学报, 2016, 37(12):1671-1676. YUAN Wancheng, WANG Zhennan, PANG Yutao, et al. Seismic fragility analysis of a continuous girder bridge subject to an earthquake mainshock-aftershock sequence[J]. Journal of Harbin Engineering University, 2016, 37(12):1671-1676.
[19] 王晓伟, 叶爱君, 沈星, 等. 大跨度桥梁边墩横向减震体系的地震易损性分析[J]. 同济大学学报(自然科学版), 2016, 44(3):333-340. WANG Xiaowei, YE Aijun, SHEN Xing, et al. Fragility Analysis on Transversal Isolation system for outer piers of long span bridges[J]. Journal of Tongji University (Natural Science), 2016, 44(3):333-340.
[20] BANERJEE S, PRASAD G G. Seismic risk assessment of reinforced concrete bridges in flood-prone regions[J]. Structure and infrastructure engineering, 2013, 9(9):952-968.

备注/Memo

备注/Memo:
收稿日期:2017-01-06。
基金项目:中央高校基本业务费资助项目(G1323521673);中国博士后基金面上项目(2016M592407);国家自然科学基金青年项目(51708527).
作者简介:庞于涛(1988-),男,讲师,博士;欧阳辉(1973-),男,副教授.
通讯作者:欧阳辉,E-mail:oyhcug@163.com
更新日期/Last Update: 2018-04-11