[1]代云云,周晶.改进的Winkler弹性地基模型在触地段动力分析中的应用[J].哈尔滨工程大学学报,2018,39(09):1451-1457.[doi:10.11990/jheu.201702050]
 DAI Yunyun,ZHOU Jing.Application of an improved Winkler elastic foundation-based model to the dynamic analysis of damaged pipelines in the touchdown zone[J].hebgcdxxb,2018,39(09):1451-1457.[doi:10.11990/jheu.201702050]
点击复制

改进的Winkler弹性地基模型在触地段动力分析中的应用(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年09期
页码:
1451-1457
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
Application of an improved Winkler elastic foundation-based model to the dynamic analysis of damaged pipelines in the touchdown zone
作者:
代云云 周晶
大连理工大学 海岸与近海工程国家重点实验室, 辽宁 大连 116023
Author(s):
DAI Yunyun ZHOU Jing
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116023, China
关键词:
立管触地段Winkler弹性地基模型模型试验体积损伤动力响应海底管道
分类号:
TE832
DOI:
10.11990/jheu.201702050
文献标志码:
A
摘要:
为了研究海洋立管触地段损伤管道在复杂荷载作用下的动力响应,本文基于Winkler弹性地基模型确定土体抗力及其分布,同时结合我国南海的地质条件,利用有限单元法将土体抗力离散成土弹簧,建立改进的Winkler弹性地基模型,并由室内模型试验验证该模型的正确性。通过将此模型应用于全尺寸损伤海底管道的动力分析,研究了触地段损伤管道不同节点的动力响应,结果与实际情况吻合,取得了良好的应用效果。表明该模型对处理实际的问题是有价值的,随着针对触地段管道研究的深入,这种价值也必然会得到越来越多的体现。

参考文献/References:

[1] XIA Jie, DAS P K, KARUNAKARAN D. A parametric design study for a semi/SCR system in Northern North Sea[J]. Ocean engineering, 2008, 35(17/18):1686-1699.
[2] PALMER A. Touchdown indentation of the seabed[J]. Applied ocean research, 2008, 30(3):235-238.
[3] 郭海燕, 高秦岭, 王小东. 钢悬链线立管与海床土体接触问题的ANSYS有限元分析[J]. 中国海洋大学学报, 2009, 39(3):521-525.GUO Haiyan, GAO Qinling, WANG Xiaodong. Finite element analysis of steel catenary riser/soil contact problem by ANSYS[J]. Periodical of Ocean University of China, 2009, 39(3):521-525.
[4] 黄维平, 孟庆飞, 白兴兰. 钢悬链式立管与海床相互作用模拟方法研究[J]. 工程力学, 2013, 30(2):14-18.HUANG Weiping, MENG Qingfei, BAI Xinglan. The simulation methods of the interaction of steel catenary risers and soil in touchdown down zone[J]. Engineering mechanics, 2013, 30(2):14-18.
[5] HAWLADER B, FOUZDER A, DUTTA S. Numerical modeling of suction and trench formation at the touchdown zone of steel catenary riser[J]. International journal of geomechanics, 2016, 16(1):04015033.
[6] 杜金新, LOW Y M. 海洋立管-海床土体接触作用数值分析[J]. 工程地质计算机应用, 2008(4):6-11.DU Jinxin, LOW Y M. Numerical analysis the interaction of risers and seabed[J]. Calculating machine application on engineering and geology, 2008(4):6-11.
[7] PESCE C P, MARTINS C A. Riser-soil interaction:Local dynamics at TDP and a discussion on the eigenvalue and the VIV problem[C]//Proceedings of the 23rd International Conference on Offshore Mechanics and Arctic Engineering. Vancouver:ASME, 2004:583-594.
[8] BAI Xinglan, HUANG Weiping, VAZ M A, et al. Riser-soil interaction model effects on the dynamic behavior of a steel catenary riser[J]. Marine structures, 2015, 41:53-76.
[9] 白兴兰, 黄维平, 高若沉. 海床土刚度对钢悬链线立管触地点动力响应的影响分析[J]. 工程力学, 2011, 28(S1):211-216.BAI Xinglan, HUANG Weiping, GAO Ruochen. Effect of seabed soil stiffness on dynamic response of a steel catenary riser at touchdown point[J]. Engineering mechanics, 2011, 28(S1):211-216.
[10] 余同希, 邱信明. 冲击动力学[M]. 北京:清华大学出版社,2011.YU Tongxi, QIU Xinming. Dynamic in shock[M]. Beijing:Tsinghua University Press, 2011.
[11] JOHNSON K L. Contact mechanics[M]. Cambridge:University Press, 1985.
[12] 毛海英, 郭海燕, 赵伟. 钢悬链线立管触地点区域管土动力相互作用分析[J]. 厦门大学学报(自然科学版), 2015, 54(1):133-137.MAO Haiying, GUO Haiyan, ZHAO Wei. Analysis of steel catenary riser/seafloor interaction in the touch down zone[J]. Journal of Xiamen University (natural science), 2015, 54(1):133-137.
[13] 郑志昌, 陈俊仁, 朱照宇. 南海海底土体物理力学特征及其地质环境初步研究[J]. 水文地质工程地质, 2004, 31(4):50-53, 65.ZHENG Zhichang, CHEN Junren, ZHU Zhaoyu. Physical and mechanical characteristics of seabed soils and its geological environment in South China Sea[J]. Hydrogeology and engineering geology, 2004, 31(4):50-53, 65.

备注/Memo

备注/Memo:
收稿日期:2017-2-28。
基金项目:国家重点基础研究发展计划项目(2011CB013702).
作者简介:代云云(1987-),女,博士研究生;周晶(1949-),男,教授,博士生导师.
通讯作者:周晶,E-mail:zhouj@dlut.edu.cn
更新日期/Last Update: 2018-09-12