[1]刘维惠,陈殿生,张立志.利用示教学习的移动机械臂轨迹避障算法[J].哈尔滨工程大学学报,2018,39(09):1546-1553.[doi:10.11990/jheu.201703030]
 LIU Weihui,CHEN Diansheng,ZHANG Lizhi.Learning from demonstration based obstacle avoidance algorithm to plan the trajectory of a mobile manipulator[J].hebgcdxxb,2018,39(09):1546-1553.[doi:10.11990/jheu.201703030]
点击复制

利用示教学习的移动机械臂轨迹避障算法(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年09期
页码:
1546-1553
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
Learning from demonstration based obstacle avoidance algorithm to plan the trajectory of a mobile manipulator
作者:
刘维惠 陈殿生 张立志
北京航空航天大学 机械工程及自动化学院, 北京 100191
Author(s):
LIU Weihui CHEN Diansheng ZHANG Lizhi
School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
关键词:
服务机器人示教学习人机交互移动机械臂轨迹避障在线修正k-近邻算法动态动作基元
分类号:
TP242.6
DOI:
10.11990/jheu.201703030
文献标志码:
A
摘要:
为了提高服务机器人的环境适应性和减轻操作者的控制负担,本文提出了一种利用示教学习的轨迹修正算法。利用动态动作基元模型,生成与示教轨迹形状相似的新轨迹。进而提出改进的距离加权k-近邻算法,实现移动机械臂末端轨迹形状的局部修正。本文设计了避免相邻有效训练数据丢失的在线更新方法,并在人机交互系统上进行避障和实时性测试。实验结果证明了本文提出的轨迹避障算法具有对新任务的适应能力,不同场景下的避障决策能力和在线修正能力,从而保证友好、流畅的人机交互过程。

参考文献/References:

[1] WREDE S, BEYER O, DREYER C, et al. Vertical integration and service orchestration for modular production systems using business process models[J]. Procedia technology, 2016, 26:259-266.
[2] PARK D H, HOFFMANN H, PASTOR P, et al. Movement reproduction and obstacle avoidance with dynamic movement primitives and potential fields[C]//Humanoids 2008-8th IEEE-RAS International Conference on Humanoid Robots. Daejeon, South Korea, 2008:91-98.
[3] LOZANO-PEREZ T. A simple motion-planning algorithm for general robot manipulators[J]. IEEE journal on robotics and automation, 1987, 3(3):224-238.
[4] LOPEZ A S, ZAPATA R, LAMA M A O. Sampling-based motion planning:a survey[J]. Computación Y sistemas, 2008, 12(1):5-24.
[5] PAN J, SUCAN I A, CHITTA S, et al. Real-time collision detection and distance computation on point cloud sensor data[C]//2013 IEEE International Conference on Robotics and Automation. Karlsruhe, Germany, 2013:3593-3599.
[6] WREDE S, EMMERICH C, GRVNBERG R, et al. A user study on kinesthetic teaching of redundant robots in task and configuration space[J]. Journal of human-robot interaction, 2013, 2(1):56-81.
[7] CALINON S, GUENTER F, BILLARD A. On learning, representing, and generalizing a task in a humanoid robot[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2007, 37(2):286-298.
[8] BILLARD A, GROLLMAN D H. Robot learning by demonstration[J]. Scholarpedia, 2013, 8(12):3824.
[9] STEIL J J, EMMERICH C, SWADZBA A, et al. Kinesthetic teaching using assisted gravity compensation for model-free trajectory generation in confined spaces[M]//RÖHRBEIN F, VEIGA G, NATALE C. Gearing Up and Accelerating Cross-Fertilization Between Academic and Industrial Robotics Research in Europe. Cham:Springer, 2014:107-127.
[10] FISCHER K, KIRSTEIN F, JENSEN L C, et al. A comparison of types of robot control for programming by Demonstration[C]//2016 11th ACM/IEEE International Conference on Human-Robot Interaction. Karlsruhe, Germany, 2016:213-220.
[11] 刘维惠, 陈殿生, 张立志. 人机协作下的机械臂轨迹生成与修正方法[J]. 机器人, 2016, 38(4):504-512.LIU Weihui, CHEN Diansheng, ZHANG Lizhi. Trajectory generation and adjustment method for robot manipulators in human-robot collaboration[J]. Robot, 2016, 38(4):504-512.
[12] UDE A, GAMS A, ASFOUR T, et al. Task-specific generalization of discrete and periodic dynamic movement primitives[J]. IEEE transactions on robotics, 2010, 26(5):800-815.
[13] KULVICIUS T, NING K J, TAMOSIUNAITE M, et al. Joining movement sequences:modified dynamic movement primitives for robotics applications exemplified on handwriting[J]. IEEE transactions on robotics, 2012, 28(1):145-157.
[14] RAI A, MEIER F, IJSPEERT A, et al. Learning coupling terms for obstacle avoidance[C]//2014 14th IEEE-Ras International Conference on Humanoid Robots. Madrid, Spain:IEEE, 2014:512-518.
[15] RAI A, SUTANTO G, SCHAAL S, et al. Learning feedback terms for reactive planning and control[C]//2017 IEEE International Conference on Robotics and Automation. Singapore, Singapore, 2017:2184-2191.
[16] KPOTUFE S. k-NN regression adapts to local intrinsic dimension[C]//Advances in Neural Information Processing system.Granda,spain,2011:729-737.
[17] DUDANI S A. The distance-weighted k-Nearest-Neighbor rule[J]. IEEE transactions on systems, man, and cybernetics, 1976, SMC-6(4):325-327.
[18] CHA E, KRONANDER K, BILLARD A. Combined kinesthetic and simulated interface for teaching robot motion models[C]//2015 24th IEEE International Symposium on Robot and Human Interactive Communication. Kobe, Japan, 2015:83-88.
[19] FANG B, GUO D, SUN F C, et al. A robotic hand-arm teleoperation system using human arm/hand with a novel data glove[C]//2015 IEEE International Conference on Robotics and Biomimetics. Zhuhai, China, 2015:2483-2488.

备注/Memo

备注/Memo:
收稿日期:2017-3-10。
基金项目:北京市科技计划重大项目(D141100003614002).
作者简介:刘维惠(1988-),女,博士研究生;陈殿生(1969-),男,教授,博士生导师;张立志(1986-),男,博士研究生.
通讯作者:陈殿生,E-mail:chends@163.com
更新日期/Last Update: 2018-09-12