[1]杨军,张瑶.计算Laplace网格变形的三维模型配准[J].哈尔滨工程大学学报,2018,39(10):1702-1708.[doi:10.11990/jheu.201704070]
 YANG Jun,ZHANG Yao.Registration between 3D models by calculation of Laplace mesh deformation[J].hebgcdxxb,2018,39(10):1702-1708.[doi:10.11990/jheu.201704070]
点击复制

计算Laplace网格变形的三维模型配准(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年10期
页码:
1702-1708
栏目:
出版日期:
2018-10-05

文章信息/Info

Title:
Registration between 3D models by calculation of Laplace mesh deformation
作者:
杨军 张瑶
兰州交通大学 电子与信息工程学院, 甘肃 兰州 730070
Author(s):
YANG Jun ZHANG Yao
School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
关键词:
模型配准ICP算法Laplace-Beltrami算子骨架子空间变形Laplace网格变形非刚性完整模型部分模型
分类号:
TP391.4
DOI:
10.11990/jheu.201704070
文献标志码:
A
摘要:
针对非刚性变形的模型间的配准问题,提出了一种结合骨架子空间变形技术和Laplace网格变形的配准方法。对源模型和目标模型执行迭代最近点算法使两模型姿态相同的部分对齐;采用骨架子空间变形技术计算Laplace网格变形所需要的控制点;通过执行Laplace网格变形对源模型进行非刚性变形并使其与目标模型完全对齐,实现配准。实验结果表明:本文算法可以实现较大尺度变形的模型间的配准,不仅适用于两个姿态不同的完整模型,也适用于姿态不同的整体与部分模型间的配准。

参考文献/References:

[1] ZHANG Jing, YAN C H, CHUI C K, et al. Multimodal image registration system for image-guided orthopaedic surgery[J]. Machine vision and applications, 2011, 22(5):851-863.
[2] KIM E, GORDONOV T, LIU Y, et al. Reverse engineering to suggest biologically relevant redox activities of phenolic materials[J]. ACS chemical biology, 2013, 8(4):716-724.
[3] MOGLIA A, FERRAR V, MORELLI L, et al. A systematic review of virtual reality simulators for robot-assisted surgery[J]. European urology, 2016, 69(6):1065-1080.
[4] ZHANG Dongwen, LI Zhicheng, CHEN Ken, et al. An optical tracker based robot registration and servoing method for ultrasound guided percutaneous renal access[J]. Biomedical engineering online, 2013, 12:47.
[5] FINETTO C, ROSATI G, FACCIO M, et al. Implementation framework for a fully flexible assembly system (F-FAS)[J]. Assembly automation, 2015, 35(1):114-121.
[6] GELFAND N, MITRA N J, GUIBAS L J, et al. Robust global registration[C]//Proceedings of the 3th Eurographics Symposium on Geometry Processing. Switzerland, 2005:197-206.
[7] MITRA N J, FLORY S, OVSJANIKOV M, et al. Dynamic geometry registration[C]//Proceedings of the 5th Eurographics Symposium on Geometry Processing. Switzerland, 2007:172-182.
[8] LI Hao, SUMNER R W, PAULY M. Global correspondence optimization for non-rigid registration of depth scans[J]. Computer graphics forum, 2008, 27(5):1421-1430.
[9] 李俊, 程志全, 李宏华, 等. 一种面向大尺度变形的非刚性注册算法[J]. 计算机学报, 2011, 34(3):539-547.LI Jun, CHENG Zhiquan, LI Honghua, et al. A non-rigid registration algorithm of large-scale deformable models[J]. Chinese journal of computers, 2011, 34(3):539-547.
[10] MORITA K, KOBASHI S, WAKATA Y, et al. Non-rigid cerebral surface registration for neonates using ICP algorithm[J]. Transactions of the institute of systems, control and information engineers, 2016, 29(5):195-201.
[11] SERAFIN J, GRISETTI G. NICP:dense normal based point cloud registration[C]//Proceedings of 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems. Hamburg, Germany, 2015:742-749.
[12] CHENG Shiyang, MARRAS I, ZAFEIRIOU S, et al. Active nonrigid ICP algorithm[C]//Proceedings of 2015 11th IEEE International Conference and Workshops on Automatic Face and Gesture Recognition. Ljubljana, Slovenia, 2015:1-8.
[13] 杨军, 张瑶, 黄亮. 改进的ICP算法在三维模型配准中的研究[J]. 计算机科学与探索, 2018, 12(1):153-162.YANG Jun, ZHANG Yao, HUANG Liang. Research on 3D model registration by improved ICP algorithm[J]. Journal of frontiers of computer science and technology, 2018, 12(1):153-162.
[14] BESL P J, MCKAY N D. A method for registration of 3-D shapes[J]. IEEE transactions on pattern analysis and machine intelligence, 1992, 14(2):239-256.
[15] MURAI A, ENDO Y, TADA M. Anatomographic volumetric skin-musculoskeletal model and its kinematic deformation with surface-based SSD[J]. IEEE robotics and automation letters, 2016, 1(2):1103-1109.
[16] TAUBIN G. A signal processing approach to fair surface design[C]//Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. New York, 1995:351-358.
[17] IGARASHI T, MOSCOVICH T, HUGHES J F. As-rigid-as-possible shape manipulation[J]. ACM transactions on graphics, 2005, 24(3):1134-1141.
[18] SORKINE O, ALEXA M. As-rigid-as-possible surface modeling[C]//Proceedings of the 5th Eurographics Symposium on Geometry Processing. Aire-la-Ville, Switzerland, 2007:109-116.
[19] UMEHARA M, YAMADA K. Differential geometry of curves and surfaces[J]. Undergraduate texts in mathematics, 2016, 2(4):273-275.
[20] VODEV G. Uniform estimates of the resolvent of the laplace-beltrami operator on infinite volume riemannian manifolds with cusps[J]. Communications in partial differential equations, 2002, 27(7/8):1437-1465.
[21] MEYER M, DESBRUN M, SCHRODER P, et al. Discrete differential-geometry operators for triangulated 2-manifolds[M]//HEGE H C, POLTHIER K. Visualization and Mathematics Ⅲ. Berlin, Heidelberg:Springer, 2003:35-57.
[22] ALEXA M. Differential coordinates for local mesh morphing and deformation[J]. The visual computer, 2003, 19(2/3):105-114.

备注/Memo

备注/Memo:
收稿日期:2017-04-21。
基金项目:国家自然科学基金项目(61462059);人社部留学人员科技活动项目择优资助项目(重点类)(2013277);甘肃省高等学校基本科研业务费项目(214142).
作者简介:杨军(1973-),男,教授,博士生导师.
通讯作者:杨军,E-mail:yangj@mail.lzjtu.cn.
更新日期/Last Update: 2018-10-10