[1]李珂,阴可,姚舜禹.斜向荷载作用下岩质地基基础应力分布[J].哈尔滨工程大学学报,2018,39(09):1526-1531.[doi:10.11990/jheu.201704101]
 LI Ke,YIN Ke,YAO Shunyu.Stress distribution of rock foundation under the action of slant load[J].hebgcdxxb,2018,39(09):1526-1531.[doi:10.11990/jheu.201704101]
点击复制

斜向荷载作用下岩质地基基础应力分布(/HTML)
分享到:

《哈尔滨工程大学学报》[ISSN:1006-6977/CN:61-1281/TN]

卷:
39
期数:
2018年09期
页码:
1526-1531
栏目:
出版日期:
2018-09-05

文章信息/Info

Title:
Stress distribution of rock foundation under the action of slant load
作者:
李珂12 阴可1 姚舜禹1
1. 重庆大学 土木工程学院, 重庆 400044;
2. 重庆市高新工程勘察设计院有限公司, 重庆 400047
Author(s):
LI Ke12 YIN Ke1 YAO Shunyu1
1. School of Civil Engineering, Chongqing University, Chongqing 400044, China;
2. Chongqing Hi-new Geotechnical Investigation and Design Institute Co., Ltd., Chongqing 400047, China
关键词:
斜向荷载岩质地基基础应力分布压应力核心体法向刚度切向刚度
分类号:
TU456
DOI:
10.11990/jheu.201704101
文献标志码:
A
摘要:
针对含有斜向支撑或斜向传力构件的岩土体支护结构嵌岩基础存在力学机理不明晰的问题,采用斜向荷载作用下岩质地基基础模型试验与三维有限元模型的分析方法,得到了斜向荷载作用下岩质地基基础应力分布规律和基础破坏模式。通过引入Goodman层状岩体内应力求解中的等效各向同性介质理论对基础压应力核心体边界进行了求解;在Southwell基本方程基础上通过Hankel积分变换对压应力核心体边界计算中的主要参数knks的理论算法进行了推导。本文通过对比理论计算与三维有限元分析结论,验证了基于等效各向同性介质理论提出的基础压应力核心体边界和参数knks的理论计算方法,得到了斜向荷载作用下岩质地基基础应力分布的特点及其应力边界求解方法,为岩质地基基础的内应力后续研究与设计提供了理论依据。

参考文献/References:

[1] FOX L. Computation of traffic stresses in a simple road structure[C]//Proceedings of 2nd Interntional Conference of Soil Mechanics and Foundation Engineering. 1948, 2:236-246.
[2] WHITMAN R V, RICHART F E JR. Design procedures for dynamically loaded foundations[J]. Journa1 of the soil mechanics and foundations division, 1967, 93(6):169-193.
[3] MUKI T. Asymmetric problems of the theory of elasticity for a semi-infinite solid and a thick plate[M]//SNEDDON I N, HILL R. Progress in Solid Mechanics, Vol. 1. Amsterdam:North-Holland Publishing Co., 1960.
[4] SCHIFFMAN R L, AGGARWALA D B. Stresses and displacements produced in a semi-infinite elastic solid by a rigid elliptical footing[C]//Proceedings of the 5th International Conference of Soil Mechanics and Foundation Engineering. 1961, 1:795-801.
[5] 云天铨. 水平刚性岩基上的弹性层表面受垂直集中力问题的积分方程解法[J]. 固体力学学报, 1983(3):375-383. YUN Tianquan. An integral equation method for problem of load acting perpendicularly on the surface of a half space with rigid horizontal level[J]. Acta mechanica solida sinica, 1983(3):375-383.
[6] 文丕华. 水平刚性基础上弹性层表面受垂直集中力的精确解[J]. 应用数学与力学, 1986, 7(5):467-475. WEN Pihua. An accurate solution for the surface of elastic layer under normal concentrated load acting on a rigid horizontal base[J]. Applied mathematics and mechanics, 1986, 7(5):467-475.
[7] 阴可, 程毅, 周晓雪, 等. 岩石地基上扩展基础的基底反力实测分析[J]. 重庆建筑大学学报, 2006, 28(6):72-74. YIN Ke, CHENG Yi, ZHOU Xiaoxue, et al. Experimental study on sub-grade reaction of spreading Foundation on rock sub-grade[J]. Journal of Chongqing Jianzhu University, 2006, 28(6):72-74.
[8] 艾智勇, 吴超. 分层地基上矩形刚性基础的基底反力、沉降和倾斜计算[J]. 力学季刊, 2008, 29(1):113-119. AI Zhiyong, WU Chao. Calculation of reaction forces of base, settlement and inclinatian of rectangular rigid plate on Multi-Layered soils[J]. Chinese quarterly of mechanics, 2008, 29(1):113-119.
[9] 阴可, 殷杰. 岩石地基上扩展基础的受力特性分析[J]. 重庆建筑大学学报, 2008, 30(2):27-31. YIN Ke, YIN Jie. Mechanical behavior of spread foundations on rock[J]. Journal of Chongqing Jianzhu University, 2008, 30(2):27-31.
[10] BATHE K J. Finite element procedures[M]. Cambridge, MA:Klaus-Jürgen Bathe, 2007.
[11] GOODMAN R E, Van T K, HEUZE F E. The role of structure and solid mechanics in the design of surface and underground excavation[C]//Proceedings, Conference on Structure, Solid Mechanics an Engineering Design, Part2, paper 105, p. 137, Wiley, New York.
[12] 江见鲸, 陆新征, 叶列平. 混凝土结构有限元分析[M]. 北京:清华大学出版社, 2005. JIANG Jianjing, LU Xinzheng, YE Lieping. Finite element analysis of concrete strucures[M]. Beijing:Tsinghua University Press, 2005.

备注/Memo

备注/Memo:
收稿日期:2018-4-28。
基金项目:高等学校博士学科点科研基金项目(20110191110027).
作者简介:李珂(1982-),男,博士研究生;阴可(1968-),男,教授,博士生导师.
通讯作者:阴可,E-mail:yinke@cqu.edu.cn
更新日期/Last Update: 2018-09-12